SAGD条件下纳米颗粒辅助泡沫稳定性研究

S. Maaref, A. Kantzas
{"title":"SAGD条件下纳米颗粒辅助泡沫稳定性研究","authors":"S. Maaref, A. Kantzas","doi":"10.2118/208877-ms","DOIUrl":null,"url":null,"abstract":"\n Thermal oil recovery processes, and more specifically steam assisted gravity drainage (SAGD), is one of the two commercial methods to produce heavy oil. In the later stages of SAGD heat losses increase. One solution to improve heat losses in the steam chamber is to co-inject a foaming solution with non-condensable gases. It is expected that such a scheme will redirect steam towards heating oil and not the overburden. An appropriate foaming agent is required for successful implementation of a steam-foam process. Conventional laboratory techniques have provided some indication of foam stability with different types of surfactants but failed to match the reservoir conditions and time scale. Recently, the use of nanoparticles along with surfactants has gained attention as a method to stabilize foams under thermal operating conditions. The aim of this research is to investigate the thermal stability of foam under steam conditions (temperatures around 200 °C) using mixtures of different surfactants and silica nanoparticles. A series of foam stability tests were conducted at temperature ranges of 170 °C to 212 °C and pressures of 2.78 MPag and 4.22 MPag using two different anionic surfactants and four different bare and coated silica nanoparticles. The foamy solutions were prepared with a combination of different surfactants and nanoparticles, which were co-injected with N2 gas into a sand pack to generate foam at different temperatures and pressures. The generated foam was then transferred to a high pressure and high temperature visual cell and the foam half-life was measured as the indicator of its decay.\n It was observed that a small deviation from the dew point (decreasing the temperature or increasing the pressure) significantly improved foam stability. Addition of nanoparticles proved to be synergistic as the foam half-life near the steam dew point increased about four-fold compared to surfactant only foams. Among the tested nanoparticles, the use of polyethylene glycol (PEG) coated silica nanoparticles along with an anionic surfactant resulted in the highest foam stability near the steam dew point.\n To date, most of the foam stability tests have been conducted at temperatures below 200 °C with the focus on using surfactants. This research extended the foam stability tests to temperatures in excess of 200°C using mixtures of surfactants and nanoparticles. Although the foam stability still needs to be improved for reservoir-scale application, our screening methodology presents a realistic process of generating foam in a porous medium with nanoparticles and surfactants under a desired thermodynamic state for subsequent foam thermal stability testing.","PeriodicalId":146458,"journal":{"name":"Day 1 Wed, March 16, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanoparticle Assisted Foam Stability Under SAGD Conditions\",\"authors\":\"S. Maaref, A. Kantzas\",\"doi\":\"10.2118/208877-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Thermal oil recovery processes, and more specifically steam assisted gravity drainage (SAGD), is one of the two commercial methods to produce heavy oil. In the later stages of SAGD heat losses increase. One solution to improve heat losses in the steam chamber is to co-inject a foaming solution with non-condensable gases. It is expected that such a scheme will redirect steam towards heating oil and not the overburden. An appropriate foaming agent is required for successful implementation of a steam-foam process. Conventional laboratory techniques have provided some indication of foam stability with different types of surfactants but failed to match the reservoir conditions and time scale. Recently, the use of nanoparticles along with surfactants has gained attention as a method to stabilize foams under thermal operating conditions. The aim of this research is to investigate the thermal stability of foam under steam conditions (temperatures around 200 °C) using mixtures of different surfactants and silica nanoparticles. A series of foam stability tests were conducted at temperature ranges of 170 °C to 212 °C and pressures of 2.78 MPag and 4.22 MPag using two different anionic surfactants and four different bare and coated silica nanoparticles. The foamy solutions were prepared with a combination of different surfactants and nanoparticles, which were co-injected with N2 gas into a sand pack to generate foam at different temperatures and pressures. The generated foam was then transferred to a high pressure and high temperature visual cell and the foam half-life was measured as the indicator of its decay.\\n It was observed that a small deviation from the dew point (decreasing the temperature or increasing the pressure) significantly improved foam stability. Addition of nanoparticles proved to be synergistic as the foam half-life near the steam dew point increased about four-fold compared to surfactant only foams. Among the tested nanoparticles, the use of polyethylene glycol (PEG) coated silica nanoparticles along with an anionic surfactant resulted in the highest foam stability near the steam dew point.\\n To date, most of the foam stability tests have been conducted at temperatures below 200 °C with the focus on using surfactants. This research extended the foam stability tests to temperatures in excess of 200°C using mixtures of surfactants and nanoparticles. Although the foam stability still needs to be improved for reservoir-scale application, our screening methodology presents a realistic process of generating foam in a porous medium with nanoparticles and surfactants under a desired thermodynamic state for subsequent foam thermal stability testing.\",\"PeriodicalId\":146458,\"journal\":{\"name\":\"Day 1 Wed, March 16, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, March 16, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208877-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 16, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208877-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

热采油工艺,更具体地说,是蒸汽辅助重力泄油(SAGD),是开采稠油的两种商业方法之一。在SAGD后期,热损失增加。改善蒸汽室热损失的一种解决方案是与不可冷凝气体共同注入泡沫溶液。预计这样的方案将使蒸汽转向加热油,而不是覆盖层。为了成功地实施蒸汽泡沫工艺,需要适当的发泡剂。传统的实验室技术已经提供了不同类型表面活性剂的泡沫稳定性的一些指示,但无法匹配储层条件和时间尺度。最近,纳米颗粒与表面活性剂的结合作为一种在热操作条件下稳定泡沫的方法引起了人们的关注。本研究的目的是利用不同表面活性剂和二氧化硅纳米颗粒的混合物,研究泡沫在蒸汽条件下(温度约为200℃)的热稳定性。使用两种不同的阴离子表面活性剂和四种不同的裸和包覆二氧化硅纳米颗粒,在170°C至212°C的温度范围和2.78 MPag和4.22 MPag的压力下进行了一系列泡沫稳定性测试。泡沫溶液由不同的表面活性剂和纳米颗粒组合而成,并将其与氮气共同注入砂包中,在不同的温度和压力下产生泡沫。然后将生成的泡沫转移到高压高温视觉细胞中,并测量泡沫半衰期作为其衰变的指标。观察到,与露点的微小偏差(降低温度或增加压力)显著改善了泡沫的稳定性。纳米颗粒的加入被证明具有协同作用,泡沫在蒸汽露点附近的半衰期比只加入表面活性剂的泡沫增加了约4倍。在测试的纳米颗粒中,使用聚乙二醇(PEG)包覆的二氧化硅纳米颗粒和阴离子表面活性剂在蒸汽露点附近的泡沫稳定性最高。迄今为止,大多数泡沫稳定性测试都是在低于200°C的温度下进行的,重点是使用表面活性剂。这项研究使用表面活性剂和纳米颗粒的混合物,将泡沫稳定性测试扩展到200°C以上的温度。尽管对于油藏规模的应用,泡沫稳定性仍然需要改进,但我们的筛选方法提供了一个在多孔介质中使用纳米颗粒和表面活性剂在理想的热力学状态下产生泡沫的现实过程,用于随后的泡沫热稳定性测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoparticle Assisted Foam Stability Under SAGD Conditions
Thermal oil recovery processes, and more specifically steam assisted gravity drainage (SAGD), is one of the two commercial methods to produce heavy oil. In the later stages of SAGD heat losses increase. One solution to improve heat losses in the steam chamber is to co-inject a foaming solution with non-condensable gases. It is expected that such a scheme will redirect steam towards heating oil and not the overburden. An appropriate foaming agent is required for successful implementation of a steam-foam process. Conventional laboratory techniques have provided some indication of foam stability with different types of surfactants but failed to match the reservoir conditions and time scale. Recently, the use of nanoparticles along with surfactants has gained attention as a method to stabilize foams under thermal operating conditions. The aim of this research is to investigate the thermal stability of foam under steam conditions (temperatures around 200 °C) using mixtures of different surfactants and silica nanoparticles. A series of foam stability tests were conducted at temperature ranges of 170 °C to 212 °C and pressures of 2.78 MPag and 4.22 MPag using two different anionic surfactants and four different bare and coated silica nanoparticles. The foamy solutions were prepared with a combination of different surfactants and nanoparticles, which were co-injected with N2 gas into a sand pack to generate foam at different temperatures and pressures. The generated foam was then transferred to a high pressure and high temperature visual cell and the foam half-life was measured as the indicator of its decay. It was observed that a small deviation from the dew point (decreasing the temperature or increasing the pressure) significantly improved foam stability. Addition of nanoparticles proved to be synergistic as the foam half-life near the steam dew point increased about four-fold compared to surfactant only foams. Among the tested nanoparticles, the use of polyethylene glycol (PEG) coated silica nanoparticles along with an anionic surfactant resulted in the highest foam stability near the steam dew point. To date, most of the foam stability tests have been conducted at temperatures below 200 °C with the focus on using surfactants. This research extended the foam stability tests to temperatures in excess of 200°C using mixtures of surfactants and nanoparticles. Although the foam stability still needs to be improved for reservoir-scale application, our screening methodology presents a realistic process of generating foam in a porous medium with nanoparticles and surfactants under a desired thermodynamic state for subsequent foam thermal stability testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steam Additives to Reduce the Steam-Oil Ratio in SAGD: Experimental Analysis, Pilot Design, and Field Application Powering Offshore Installations with Wind Energy Quantification of Phase Behaviour and Physical Properties of Alkane Solvents/CO2/ Water/Heavy Oil Systems under Equilibrium and Nonequilibrium Conditions Profile Ultrasonic Velocity Measurements Performed on Slabbed Core: Implications for High-Resolution Permeability Prediction in Low-Permeability Rocks Holistic Real-Time Drilling Parameters Optimization Delivers Best-in-Class Drilling Performance and Preserves Bit Condition - A Case History from an Integrated Project in the Middle East
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1