{"title":"将嵌套蒙特卡罗与局部搜索相结合解决MaxSAT问题","authors":"Hui Wang, Abdallah Saffidine, T. Cazenave","doi":"10.48550/arXiv.2302.13225","DOIUrl":null,"url":null,"abstract":"Recent work proposed the UCTMAXSAT algorithm to address Maximum Satisfiability Problems (MaxSAT) and shown improved performance over pure Stochastic Local Search algorithms (SLS). UCTMAXSAT is based on Monte Carlo Tree Search but it uses SLS instead of purely random playouts. In this work, we introduce two algorithmic variations over UCTMAXSAT. We carry an empirical analysis on MaxSAT benchmarks from recent competitions and establish that both ideas lead to performance improvements. First, a nesting of the tree search inspired by the Nested Monte Carlo Search algorithm is effective on most instance types in the benchmark. Second, we observe that using a static flip limit in SLS, the ideal budget depends heavily on the instance size and we propose to set it dynamically. We show that it is a robust way to achieve comparable performance on a variety of instances without requiring additional tuning.","PeriodicalId":430111,"journal":{"name":"Learning and Intelligent Optimization","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local Search\",\"authors\":\"Hui Wang, Abdallah Saffidine, T. Cazenave\",\"doi\":\"10.48550/arXiv.2302.13225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work proposed the UCTMAXSAT algorithm to address Maximum Satisfiability Problems (MaxSAT) and shown improved performance over pure Stochastic Local Search algorithms (SLS). UCTMAXSAT is based on Monte Carlo Tree Search but it uses SLS instead of purely random playouts. In this work, we introduce two algorithmic variations over UCTMAXSAT. We carry an empirical analysis on MaxSAT benchmarks from recent competitions and establish that both ideas lead to performance improvements. First, a nesting of the tree search inspired by the Nested Monte Carlo Search algorithm is effective on most instance types in the benchmark. Second, we observe that using a static flip limit in SLS, the ideal budget depends heavily on the instance size and we propose to set it dynamically. We show that it is a robust way to achieve comparable performance on a variety of instances without requiring additional tuning.\",\"PeriodicalId\":430111,\"journal\":{\"name\":\"Learning and Intelligent Optimization\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Intelligent Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.13225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Intelligent Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.13225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local Search
Recent work proposed the UCTMAXSAT algorithm to address Maximum Satisfiability Problems (MaxSAT) and shown improved performance over pure Stochastic Local Search algorithms (SLS). UCTMAXSAT is based on Monte Carlo Tree Search but it uses SLS instead of purely random playouts. In this work, we introduce two algorithmic variations over UCTMAXSAT. We carry an empirical analysis on MaxSAT benchmarks from recent competitions and establish that both ideas lead to performance improvements. First, a nesting of the tree search inspired by the Nested Monte Carlo Search algorithm is effective on most instance types in the benchmark. Second, we observe that using a static flip limit in SLS, the ideal budget depends heavily on the instance size and we propose to set it dynamically. We show that it is a robust way to achieve comparable performance on a variety of instances without requiring additional tuning.