{"title":"功能在网表表示学习中很重要","authors":"Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, Yu Huang","doi":"10.1145/3489517.3530410","DOIUrl":null,"url":null,"abstract":"Learning feasible representation from raw gate-level netlists is essential for incorporating machine learning techniques in logic synthesis, physical design, or verification. Existing message-passing-based graph learning methodologies focus merely on graph topology while overlooking gate functionality, which often fails to capture underlying semantic, thus limiting their generalizability. To address the concern, we propose a novel netlist representation learning framework that utilizes a contrastive scheme to acquire generic functional knowledge from netlists effectively. We also propose a customized graph neural network (GNN) architecture that learns a set of independent aggregators to better cooperate with the above framework. Comprehensive experiments on multiple complex real-world designs demonstrate that our proposed solution significantly outperforms state-of-the-art netlist feature learning flows.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Functionality matters in netlist representation learning\",\"authors\":\"Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, Yu Huang\",\"doi\":\"10.1145/3489517.3530410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning feasible representation from raw gate-level netlists is essential for incorporating machine learning techniques in logic synthesis, physical design, or verification. Existing message-passing-based graph learning methodologies focus merely on graph topology while overlooking gate functionality, which often fails to capture underlying semantic, thus limiting their generalizability. To address the concern, we propose a novel netlist representation learning framework that utilizes a contrastive scheme to acquire generic functional knowledge from netlists effectively. We also propose a customized graph neural network (GNN) architecture that learns a set of independent aggregators to better cooperate with the above framework. Comprehensive experiments on multiple complex real-world designs demonstrate that our proposed solution significantly outperforms state-of-the-art netlist feature learning flows.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functionality matters in netlist representation learning
Learning feasible representation from raw gate-level netlists is essential for incorporating machine learning techniques in logic synthesis, physical design, or verification. Existing message-passing-based graph learning methodologies focus merely on graph topology while overlooking gate functionality, which often fails to capture underlying semantic, thus limiting their generalizability. To address the concern, we propose a novel netlist representation learning framework that utilizes a contrastive scheme to acquire generic functional knowledge from netlists effectively. We also propose a customized graph neural network (GNN) architecture that learns a set of independent aggregators to better cooperate with the above framework. Comprehensive experiments on multiple complex real-world designs demonstrate that our proposed solution significantly outperforms state-of-the-art netlist feature learning flows.