{"title":"协同工作环境中容错和安全数据存储方法","authors":"A. Subbiah, D. Blough","doi":"10.1145/1103780.1103793","DOIUrl":null,"url":null,"abstract":"We describe a novel approach for building a secure and fault tolerant data storage service in collaborative work environments, which uses perfect secret sharing schemes to store data. Perfect secret sharing schemes have found little use in managing generic data because of the high computation overheads incurred by such schemes. Our proposed approach uses a novel combination of XOR secret sharing and replication mechanisms, which drastically reduce the computation overheads and achieve speeds comparable to standard encryption schemes. The combination of secret sharing and replication manifests itself as an architectural framework, which has the attractive property that its dimension can be varied to exploit tradeoffs amongst different performance metrics. We evaluate the properties and performance of the proposed framework and show that the combination of perfect secret sharing and replication can be used to build efficient fault-tolerant and secure distributed data storage systems.","PeriodicalId":413919,"journal":{"name":"ACM International Workshop on Storage Security And Survivability","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"An approach for fault tolerant and secure data storage in collaborative work environments\",\"authors\":\"A. Subbiah, D. Blough\",\"doi\":\"10.1145/1103780.1103793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a novel approach for building a secure and fault tolerant data storage service in collaborative work environments, which uses perfect secret sharing schemes to store data. Perfect secret sharing schemes have found little use in managing generic data because of the high computation overheads incurred by such schemes. Our proposed approach uses a novel combination of XOR secret sharing and replication mechanisms, which drastically reduce the computation overheads and achieve speeds comparable to standard encryption schemes. The combination of secret sharing and replication manifests itself as an architectural framework, which has the attractive property that its dimension can be varied to exploit tradeoffs amongst different performance metrics. We evaluate the properties and performance of the proposed framework and show that the combination of perfect secret sharing and replication can be used to build efficient fault-tolerant and secure distributed data storage systems.\",\"PeriodicalId\":413919,\"journal\":{\"name\":\"ACM International Workshop on Storage Security And Survivability\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Workshop on Storage Security And Survivability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1103780.1103793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Workshop on Storage Security And Survivability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1103780.1103793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approach for fault tolerant and secure data storage in collaborative work environments
We describe a novel approach for building a secure and fault tolerant data storage service in collaborative work environments, which uses perfect secret sharing schemes to store data. Perfect secret sharing schemes have found little use in managing generic data because of the high computation overheads incurred by such schemes. Our proposed approach uses a novel combination of XOR secret sharing and replication mechanisms, which drastically reduce the computation overheads and achieve speeds comparable to standard encryption schemes. The combination of secret sharing and replication manifests itself as an architectural framework, which has the attractive property that its dimension can be varied to exploit tradeoffs amongst different performance metrics. We evaluate the properties and performance of the proposed framework and show that the combination of perfect secret sharing and replication can be used to build efficient fault-tolerant and secure distributed data storage systems.