{"title":"基于ANFIS、ANFIS- pso和ANFIS- ga模型的铝端铣表面粗糙度预测参数分析","authors":"S. Balonji, I. Okokpujie, L. Tartibu","doi":"10.1115/imece2022-95418","DOIUrl":null,"url":null,"abstract":"\n Milling is one of the old and common cutting processes that utilize rotating tools to take materials off the main component with a combination of tools and workpiece movements. The texture of a machined surface is a key factor in defining how an essential component interacts with its environment. Trial-and-error machining to produce high-quality surfaces has been a time-consuming method that yields lower production and poor revenue. In this paper, the performances of an Adaptive Network-based Fuzzy Inference System (ANFIS) model has been employed for the prediction of the surface roughness (SR) of a block of Aluminum alloy AI6061 machined on an end-mill CNC machine by varying four input settings namely: The spindle speed of rotation, the tool cutting rate, the radial depth, and the axial depth. The approach consisted of a parametric analysis carried out within each system to obtain the finest models for the prediction. The hybrids ANFIS-PSO and ANFIS-GA have been employed to find out which one, either PSO or GA, optimizes better ANFIS for the prediction of Al6061 SR. Their performances produced better results than the stand-alone ANFIS, with ANFIS-GA yielding the best results of the most negligible RMSE value of 0.01097 and the regression values of 0.9939 for training and 0.8102 for testing.","PeriodicalId":113474,"journal":{"name":"Volume 2B: Advanced Manufacturing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric Analysis of ANFIS, ANFIS-PSO, and ANFIS-GA Models for the Prediction of Aluminum Surface Roughness in End-Milling Operation\",\"authors\":\"S. Balonji, I. Okokpujie, L. Tartibu\",\"doi\":\"10.1115/imece2022-95418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Milling is one of the old and common cutting processes that utilize rotating tools to take materials off the main component with a combination of tools and workpiece movements. The texture of a machined surface is a key factor in defining how an essential component interacts with its environment. Trial-and-error machining to produce high-quality surfaces has been a time-consuming method that yields lower production and poor revenue. In this paper, the performances of an Adaptive Network-based Fuzzy Inference System (ANFIS) model has been employed for the prediction of the surface roughness (SR) of a block of Aluminum alloy AI6061 machined on an end-mill CNC machine by varying four input settings namely: The spindle speed of rotation, the tool cutting rate, the radial depth, and the axial depth. The approach consisted of a parametric analysis carried out within each system to obtain the finest models for the prediction. The hybrids ANFIS-PSO and ANFIS-GA have been employed to find out which one, either PSO or GA, optimizes better ANFIS for the prediction of Al6061 SR. Their performances produced better results than the stand-alone ANFIS, with ANFIS-GA yielding the best results of the most negligible RMSE value of 0.01097 and the regression values of 0.9939 for training and 0.8102 for testing.\",\"PeriodicalId\":113474,\"journal\":{\"name\":\"Volume 2B: Advanced Manufacturing\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-95418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-95418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parametric Analysis of ANFIS, ANFIS-PSO, and ANFIS-GA Models for the Prediction of Aluminum Surface Roughness in End-Milling Operation
Milling is one of the old and common cutting processes that utilize rotating tools to take materials off the main component with a combination of tools and workpiece movements. The texture of a machined surface is a key factor in defining how an essential component interacts with its environment. Trial-and-error machining to produce high-quality surfaces has been a time-consuming method that yields lower production and poor revenue. In this paper, the performances of an Adaptive Network-based Fuzzy Inference System (ANFIS) model has been employed for the prediction of the surface roughness (SR) of a block of Aluminum alloy AI6061 machined on an end-mill CNC machine by varying four input settings namely: The spindle speed of rotation, the tool cutting rate, the radial depth, and the axial depth. The approach consisted of a parametric analysis carried out within each system to obtain the finest models for the prediction. The hybrids ANFIS-PSO and ANFIS-GA have been employed to find out which one, either PSO or GA, optimizes better ANFIS for the prediction of Al6061 SR. Their performances produced better results than the stand-alone ANFIS, with ANFIS-GA yielding the best results of the most negligible RMSE value of 0.01097 and the regression values of 0.9939 for training and 0.8102 for testing.