{"title":"行为模型中的克隆检测方法","authors":"Elizabeth P. Antony, Manar H. Alalfi, J. Cordy","doi":"10.1109/WCRE.2013.6671325","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for identifying near-miss interaction clones in reverse-engineered UML behavioural models. Our goal is to identify patterns of interaction (“conversations”) that can be used to characterize and abstract the run-time behaviour of web applications and other interactive systems. In order to leverage robust near-miss code clone technology, our approach is text-based, working on the level of XMI, the standard interchange serialization for UML. Behavioural model clone detection presents several challenges - first, it is not clear how to break a continuous stream of interaction between lifelines into meaningful conversational units. Second, unlike programming languages, the XMI text representation for UML is highly non-local, using attributes to reference information in the model file remotely. In this work we use a set of contextualizing source transformations on the XMI text representation to reveal the hidden hierarchical structure of the model and granularize behavioural interactions into conversational units. Then we adapt NiCad, a near-miss code clone detection tool, to help us identify conversational clones in reverse-engineered behavioural models.","PeriodicalId":275092,"journal":{"name":"2013 20th Working Conference on Reverse Engineering (WCRE)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"An approach to clone detection in behavioural models\",\"authors\":\"Elizabeth P. Antony, Manar H. Alalfi, J. Cordy\",\"doi\":\"10.1109/WCRE.2013.6671325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an approach for identifying near-miss interaction clones in reverse-engineered UML behavioural models. Our goal is to identify patterns of interaction (“conversations”) that can be used to characterize and abstract the run-time behaviour of web applications and other interactive systems. In order to leverage robust near-miss code clone technology, our approach is text-based, working on the level of XMI, the standard interchange serialization for UML. Behavioural model clone detection presents several challenges - first, it is not clear how to break a continuous stream of interaction between lifelines into meaningful conversational units. Second, unlike programming languages, the XMI text representation for UML is highly non-local, using attributes to reference information in the model file remotely. In this work we use a set of contextualizing source transformations on the XMI text representation to reveal the hidden hierarchical structure of the model and granularize behavioural interactions into conversational units. Then we adapt NiCad, a near-miss code clone detection tool, to help us identify conversational clones in reverse-engineered behavioural models.\",\"PeriodicalId\":275092,\"journal\":{\"name\":\"2013 20th Working Conference on Reverse Engineering (WCRE)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 20th Working Conference on Reverse Engineering (WCRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCRE.2013.6671325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 20th Working Conference on Reverse Engineering (WCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCRE.2013.6671325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approach to clone detection in behavioural models
In this paper we present an approach for identifying near-miss interaction clones in reverse-engineered UML behavioural models. Our goal is to identify patterns of interaction (“conversations”) that can be used to characterize and abstract the run-time behaviour of web applications and other interactive systems. In order to leverage robust near-miss code clone technology, our approach is text-based, working on the level of XMI, the standard interchange serialization for UML. Behavioural model clone detection presents several challenges - first, it is not clear how to break a continuous stream of interaction between lifelines into meaningful conversational units. Second, unlike programming languages, the XMI text representation for UML is highly non-local, using attributes to reference information in the model file remotely. In this work we use a set of contextualizing source transformations on the XMI text representation to reveal the hidden hierarchical structure of the model and granularize behavioural interactions into conversational units. Then we adapt NiCad, a near-miss code clone detection tool, to help us identify conversational clones in reverse-engineered behavioural models.