基于快速PMVOAU-net的PolSAR海水养殖检测

Guanghu Kuang, Jianchao Fan, Jun Wang
{"title":"基于快速PMVOAU-net的PolSAR海水养殖检测","authors":"Guanghu Kuang, Jianchao Fan, Jun Wang","doi":"10.1109/icaci55529.2022.9837527","DOIUrl":null,"url":null,"abstract":"Floating raft aquaculture is an effective method in the China coastal sea. Compared to synthetic aperture radar (SAR), polarimetric synthetic aperture radar (PolSAR) can obtain more echo information and enhance the ability of imaging radar to get target information. MDOAU-net has been successful in SAR images’ marine aquaculture detection encouraging researchers to explore the performance of PolSAR data in MDOAU-net. However, MDOAU-net did not consider that PolSAR data have more multi-scattering information of objects, and SAR data only have intensity information of objects. Moreover, compared to SAR data, PolSAR data has fewer speckle noises. So, this paper proposes a new model called PMVOAU-net, which is faster and more effective for PolSAR image segmentation than MDOAU-net. Adopting the Freeman decomposition, getting pseudo-color images of scattering characteristics fusion and three components scattering images. Experiments on PolSAR images substantiate the effectiveness of the proposed approach.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PolSAR Marine Aquaculture Detection Based on Fast PMVOAU-net\",\"authors\":\"Guanghu Kuang, Jianchao Fan, Jun Wang\",\"doi\":\"10.1109/icaci55529.2022.9837527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating raft aquaculture is an effective method in the China coastal sea. Compared to synthetic aperture radar (SAR), polarimetric synthetic aperture radar (PolSAR) can obtain more echo information and enhance the ability of imaging radar to get target information. MDOAU-net has been successful in SAR images’ marine aquaculture detection encouraging researchers to explore the performance of PolSAR data in MDOAU-net. However, MDOAU-net did not consider that PolSAR data have more multi-scattering information of objects, and SAR data only have intensity information of objects. Moreover, compared to SAR data, PolSAR data has fewer speckle noises. So, this paper proposes a new model called PMVOAU-net, which is faster and more effective for PolSAR image segmentation than MDOAU-net. Adopting the Freeman decomposition, getting pseudo-color images of scattering characteristics fusion and three components scattering images. Experiments on PolSAR images substantiate the effectiveness of the proposed approach.\",\"PeriodicalId\":412347,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaci55529.2022.9837527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

浮筏养殖是中国沿海海域一种有效的养殖方法。与合成孔径雷达(SAR)相比,极化合成孔径雷达(PolSAR)可以获得更多的回波信息,增强了成像雷达获取目标信息的能力。MDOAU-net在SAR图像的海洋水产养殖检测中取得了成功,这鼓励了研究人员在MDOAU-net中探索PolSAR数据的性能。然而,MDOAU-net没有考虑到PolSAR数据具有更多目标的多重散射信息,而SAR数据仅具有目标的强度信息。此外,与SAR数据相比,PolSAR数据具有较少的散斑噪声。为此,本文提出了一种新的模型PMVOAU-net,该模型比MDOAU-net更快、更有效地对PolSAR图像进行分割。采用Freeman分解,得到伪彩色图像的散射特征融合和三分量散射图像。在PolSAR图像上的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PolSAR Marine Aquaculture Detection Based on Fast PMVOAU-net
Floating raft aquaculture is an effective method in the China coastal sea. Compared to synthetic aperture radar (SAR), polarimetric synthetic aperture radar (PolSAR) can obtain more echo information and enhance the ability of imaging radar to get target information. MDOAU-net has been successful in SAR images’ marine aquaculture detection encouraging researchers to explore the performance of PolSAR data in MDOAU-net. However, MDOAU-net did not consider that PolSAR data have more multi-scattering information of objects, and SAR data only have intensity information of objects. Moreover, compared to SAR data, PolSAR data has fewer speckle noises. So, this paper proposes a new model called PMVOAU-net, which is faster and more effective for PolSAR image segmentation than MDOAU-net. Adopting the Freeman decomposition, getting pseudo-color images of scattering characteristics fusion and three components scattering images. Experiments on PolSAR images substantiate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speed Estimation of Video Target Based on Siamese Convolutional Network and Kalman Filtering Aspect Term Extraction and Categorization for Chinese MOOC Reviews A Global Harmony Search Algorithm Based on Tent Chaos Map and Elite Reverse Learning An Improved Superpixel-based Fuzzy C-Means Method for Complex Picture Segmentation Tasks New Results on Finite-Time Synchronization of Delayed Fuzzy Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1