R. García-Hernández, E. Sánchez, M. Saad, E. Bayro-Corrochano
{"title":"五自由度机器人的离散时间分散神经反步控制器","authors":"R. García-Hernández, E. Sánchez, M. Saad, E. Bayro-Corrochano","doi":"10.1109/MED.2009.5164600","DOIUrl":null,"url":null,"abstract":"This paper deals with adaptive trajectory tracking for a five DOF robot manipulator, A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The applicability of the proposed scheme is illustrated via simulations.","PeriodicalId":422386,"journal":{"name":"2009 17th Mediterranean Conference on Control and Automation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete-time decentralized neural backstepping controller for a five DOF robot manipulator\",\"authors\":\"R. García-Hernández, E. Sánchez, M. Saad, E. Bayro-Corrochano\",\"doi\":\"10.1109/MED.2009.5164600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with adaptive trajectory tracking for a five DOF robot manipulator, A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The applicability of the proposed scheme is illustrated via simulations.\",\"PeriodicalId\":422386,\"journal\":{\"name\":\"2009 17th Mediterranean Conference on Control and Automation\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 17th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2009.5164600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2009.5164600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete-time decentralized neural backstepping controller for a five DOF robot manipulator
This paper deals with adaptive trajectory tracking for a five DOF robot manipulator, A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The applicability of the proposed scheme is illustrated via simulations.