数据并行科学工作流调度的物理和虚拟计算集群资源负载均衡方法

Jianwu Wang, P. Korambath, I. Altintas
{"title":"数据并行科学工作流调度的物理和虚拟计算集群资源负载均衡方法","authors":"Jianwu Wang, P. Korambath, I. Altintas","doi":"10.1109/SERVICES.2011.50","DOIUrl":null,"url":null,"abstract":"To execute workflows on a compute cluster resource, workflow engines can work with cluster resource manager software to distribute jobs into compute nodes on the cluster. We discuss how to interact with traditional Oracle Grid Engine and recent Hadoop cluster resource managers using a dataflow-based scheduling approach to balance compute resource load for data-parallel workflow execution. Our experiments show that: 1) The presented approach can balance computational resource load well by interacting with the resource managers and provides good execution performance on both physical and virtual clusters, 2) Oracle Grid Engine outperforms Hadoop for CPU-intensive applications on small-scale clusters.","PeriodicalId":429726,"journal":{"name":"2011 IEEE World Congress on Services","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Physical and Virtual Compute Cluster Resource Load Balancing Approach to Data-Parallel Scientific Workflow Scheduling\",\"authors\":\"Jianwu Wang, P. Korambath, I. Altintas\",\"doi\":\"10.1109/SERVICES.2011.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To execute workflows on a compute cluster resource, workflow engines can work with cluster resource manager software to distribute jobs into compute nodes on the cluster. We discuss how to interact with traditional Oracle Grid Engine and recent Hadoop cluster resource managers using a dataflow-based scheduling approach to balance compute resource load for data-parallel workflow execution. Our experiments show that: 1) The presented approach can balance computational resource load well by interacting with the resource managers and provides good execution performance on both physical and virtual clusters, 2) Oracle Grid Engine outperforms Hadoop for CPU-intensive applications on small-scale clusters.\",\"PeriodicalId\":429726,\"journal\":{\"name\":\"2011 IEEE World Congress on Services\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE World Congress on Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES.2011.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE World Congress on Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2011.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

要在计算集群资源上执行工作流,工作流引擎可以与集群资源管理器软件一起工作,将作业分发到集群上的计算节点。我们讨论了如何使用基于数据流的调度方法与传统的Oracle Grid Engine和最近的Hadoop集群资源管理器进行交互,以平衡数据并行工作流执行的计算资源负载。实验结果表明:1)该方法通过与资源管理器的交互,可以很好地平衡计算资源负载,在物理集群和虚拟集群上都提供了良好的执行性能;2)Oracle Grid Engine在小规模集群上对于cpu密集型应用的性能优于Hadoop。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Physical and Virtual Compute Cluster Resource Load Balancing Approach to Data-Parallel Scientific Workflow Scheduling
To execute workflows on a compute cluster resource, workflow engines can work with cluster resource manager software to distribute jobs into compute nodes on the cluster. We discuss how to interact with traditional Oracle Grid Engine and recent Hadoop cluster resource managers using a dataflow-based scheduling approach to balance compute resource load for data-parallel workflow execution. Our experiments show that: 1) The presented approach can balance computational resource load well by interacting with the resource managers and provides good execution performance on both physical and virtual clusters, 2) Oracle Grid Engine outperforms Hadoop for CPU-intensive applications on small-scale clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reputation-Based Web Service Selection for Composition SSC4Cloud Tooling: An Integrated Environment for the Development of Business Processes with Security Requirements in the Cloud Simplifying Web Service Discovery & Validating Service Composition A Survey of Cloud Storage Facilities Externalizing the Autopoietic Part of Software to Achieve Self-Adaptability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1