L. L. Volpe, S. De, T. Kouadou, T. Michel, Y. Ra, M. Walschaers, C. Fabre, N. Treps, V. Parigi
{"title":"量子复杂网络的量子频率梳","authors":"L. L. Volpe, S. De, T. Kouadou, T. Michel, Y. Ra, M. Walschaers, C. Fabre, N. Treps, V. Parigi","doi":"10.1364/QIM.2019.S2B.2","DOIUrl":null,"url":null,"abstract":"The experimental implementation of large multipartite entangled state in the time and frequency domain is realised via optical frequency comb and parametric process. We discuss the implementation of quantum complex networks and their non-Gaussian features","PeriodicalId":370877,"journal":{"name":"Quantum Information and Measurement (QIM) V: Quantum Technologies","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Frequency Comb for Quantum Complex Networks\",\"authors\":\"L. L. Volpe, S. De, T. Kouadou, T. Michel, Y. Ra, M. Walschaers, C. Fabre, N. Treps, V. Parigi\",\"doi\":\"10.1364/QIM.2019.S2B.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experimental implementation of large multipartite entangled state in the time and frequency domain is realised via optical frequency comb and parametric process. We discuss the implementation of quantum complex networks and their non-Gaussian features\",\"PeriodicalId\":370877,\"journal\":{\"name\":\"Quantum Information and Measurement (QIM) V: Quantum Technologies\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information and Measurement (QIM) V: Quantum Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/QIM.2019.S2B.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information and Measurement (QIM) V: Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/QIM.2019.S2B.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum Frequency Comb for Quantum Complex Networks
The experimental implementation of large multipartite entangled state in the time and frequency domain is realised via optical frequency comb and parametric process. We discuss the implementation of quantum complex networks and their non-Gaussian features