{"title":"基于傅立叶级数的非最小相位模型用于二阶和高阶统计信号处理","authors":"Chong-Yung Chi","doi":"10.1109/HOST.1997.613554","DOIUrl":null,"url":null,"abstract":"In the paper, a parametric Fourier series based model (FSBM) for or as an approximation to an arbitrary nonminimum-phase linear time-invariant (LTI) system is proposed for statistical signal processing applications where a model for LTI systems is needed. Based on the FSBM, a (minimum-phase) linear prediction error (LPE) filter for amplitude estimation of the unknown LTI system together with the Cramer Rao (CR) bounds is presented. Then an iterative algorithm for obtaining the optimum mean-square LPE filter with finite data is presented which is also an approximate maximum likelihood algorithm when the data are Gaussian. Then three iterative algorithms using higher-order statistics with finite non-Gaussian data are presented for estimating parameters of the FSBM followed by some simulation results to support the efficacy of the proposed algorithms. Finally, we draw some conclusions.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fourier series based nonminimum phase model for second- and higher-order statistical signal processing\",\"authors\":\"Chong-Yung Chi\",\"doi\":\"10.1109/HOST.1997.613554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, a parametric Fourier series based model (FSBM) for or as an approximation to an arbitrary nonminimum-phase linear time-invariant (LTI) system is proposed for statistical signal processing applications where a model for LTI systems is needed. Based on the FSBM, a (minimum-phase) linear prediction error (LPE) filter for amplitude estimation of the unknown LTI system together with the Cramer Rao (CR) bounds is presented. Then an iterative algorithm for obtaining the optimum mean-square LPE filter with finite data is presented which is also an approximate maximum likelihood algorithm when the data are Gaussian. Then three iterative algorithms using higher-order statistics with finite non-Gaussian data are presented for estimating parameters of the FSBM followed by some simulation results to support the efficacy of the proposed algorithms. Finally, we draw some conclusions.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fourier series based nonminimum phase model for second- and higher-order statistical signal processing
In the paper, a parametric Fourier series based model (FSBM) for or as an approximation to an arbitrary nonminimum-phase linear time-invariant (LTI) system is proposed for statistical signal processing applications where a model for LTI systems is needed. Based on the FSBM, a (minimum-phase) linear prediction error (LPE) filter for amplitude estimation of the unknown LTI system together with the Cramer Rao (CR) bounds is presented. Then an iterative algorithm for obtaining the optimum mean-square LPE filter with finite data is presented which is also an approximate maximum likelihood algorithm when the data are Gaussian. Then three iterative algorithms using higher-order statistics with finite non-Gaussian data are presented for estimating parameters of the FSBM followed by some simulation results to support the efficacy of the proposed algorithms. Finally, we draw some conclusions.