比较基于copula的多变量密度预测在选定支持区域的准确性

C. Diks, V. Panchenko, Oleg Sokolinskiy, Dick J. C. van Dijk
{"title":"比较基于copula的多变量密度预测在选定支持区域的准确性","authors":"C. Diks, V. Panchenko, Oleg Sokolinskiy, Dick J. C. van Dijk","doi":"10.2139/ssrn.2254892","DOIUrl":null,"url":null,"abstract":"This paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample) conditional likelihood and censored likelihood in order to focus the evaluation on the region of interest. Monte Carlo simulations document that the resulting test statistics have satisfactory size and power properties in small samples. In an empirical application to daily exchange rate returns we find evidence that the dependence structure varies with the sign and magnitude of returns, such that different parametric copula models achieve superior forecasting performance in different regions of the support. Our analysis highlights the importance of allowing for lower and upper tail dependence for accurate forecasting of common extreme appreciation and depreciation of different currencies.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support\",\"authors\":\"C. Diks, V. Panchenko, Oleg Sokolinskiy, Dick J. C. van Dijk\",\"doi\":\"10.2139/ssrn.2254892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample) conditional likelihood and censored likelihood in order to focus the evaluation on the region of interest. Monte Carlo simulations document that the resulting test statistics have satisfactory size and power properties in small samples. In an empirical application to daily exchange rate returns we find evidence that the dependence structure varies with the sign and magnitude of returns, such that different parametric copula models achieve superior forecasting performance in different regions of the support. Our analysis highlights the importance of allowing for lower and upper tail dependence for accurate forecasting of common extreme appreciation and depreciation of different currencies.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2254892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2254892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文开发了一个测试框架,用于比较基于copula的多变量密度预测的预测精度,重点关注联合分布的特定部分。该测试是在Kullback-Leibler信息标准的背景下构建的,但使用(样本外)条件似然和删节似然,以便将评估集中在感兴趣的区域上。蒙特卡罗模拟证明,所得的测试统计量在小样本中具有令人满意的尺寸和功率特性。在对日汇率收益的实证应用中,我们发现依赖结构随收益的符号和大小而变化,使得不同的参数copula模型在不同的支持区域获得更好的预测性能。我们的分析强调了允许上下尾依赖对于准确预测不同货币的共同极端升值和贬值的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support
This paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample) conditional likelihood and censored likelihood in order to focus the evaluation on the region of interest. Monte Carlo simulations document that the resulting test statistics have satisfactory size and power properties in small samples. In an empirical application to daily exchange rate returns we find evidence that the dependence structure varies with the sign and magnitude of returns, such that different parametric copula models achieve superior forecasting performance in different regions of the support. Our analysis highlights the importance of allowing for lower and upper tail dependence for accurate forecasting of common extreme appreciation and depreciation of different currencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1