结合粒子滤波和IMM方法的三维机动目标跟踪

P. H. Foo, G. Ng
{"title":"结合粒子滤波和IMM方法的三维机动目标跟踪","authors":"P. H. Foo, G. Ng","doi":"10.1109/ICIF.2007.4407974","DOIUrl":null,"url":null,"abstract":"The interacting multiple model (IMM) algorithm is a widely accepted state estimation scheme for solving maneuvering target tracking problems, which are generally nonlinear. During the IMM filtering process, serious errors can arise when a Gaussian mixture of posterior probability density functions is approximated by a single Gaussian. Particle filters (PFs) are effective in dealing with nonlinearity and non-Gaussianity. This work considers an IMM algorithm that includes a constant velocity model, a constant acceleration model and a 3D turning rate (3DTR) model for tracking three-dimensional (3D) target motion, using various combinations of nonlinear filters. In existing literature on combining IMM and particle filtering techniques to tackle difficult target maneuvers, a PF is usually used in every model In comparison, simulation results show that by using a computationally economical PF in the 3DTR model and Kalman filters in the remaining models, superior performance can be achieved with significant reduction in computational costs.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Combining IMM Method with Particle filters for 3D maneuvering target tracking\",\"authors\":\"P. H. Foo, G. Ng\",\"doi\":\"10.1109/ICIF.2007.4407974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interacting multiple model (IMM) algorithm is a widely accepted state estimation scheme for solving maneuvering target tracking problems, which are generally nonlinear. During the IMM filtering process, serious errors can arise when a Gaussian mixture of posterior probability density functions is approximated by a single Gaussian. Particle filters (PFs) are effective in dealing with nonlinearity and non-Gaussianity. This work considers an IMM algorithm that includes a constant velocity model, a constant acceleration model and a 3D turning rate (3DTR) model for tracking three-dimensional (3D) target motion, using various combinations of nonlinear filters. In existing literature on combining IMM and particle filtering techniques to tackle difficult target maneuvers, a PF is usually used in every model In comparison, simulation results show that by using a computationally economical PF in the 3DTR model and Kalman filters in the remaining models, superior performance can be achieved with significant reduction in computational costs.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4407974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4407974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

相互作用多模型(IMM)算法是一种被广泛接受的用于求解机动目标跟踪问题的状态估计方案。在IMM滤波过程中,用单个高斯近似后验概率密度函数的高斯混合会产生严重的误差。粒子滤波(PFs)是处理非线性和非高斯问题的有效方法。这项工作考虑了一种IMM算法,该算法包括一个恒定速度模型,一个恒定加速度模型和一个3D旋转速率(3DTR)模型,用于跟踪三维(3D)目标运动,使用各种非线性滤波器的组合。在现有文献中,结合IMM和粒子滤波技术解决困难目标机动问题,通常在每个模型中都使用一个PF。仿真结果表明,在3DTR模型中使用计算经济的PF,在其余模型中使用卡尔曼滤波器,可以在显著降低计算成本的情况下获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining IMM Method with Particle filters for 3D maneuvering target tracking
The interacting multiple model (IMM) algorithm is a widely accepted state estimation scheme for solving maneuvering target tracking problems, which are generally nonlinear. During the IMM filtering process, serious errors can arise when a Gaussian mixture of posterior probability density functions is approximated by a single Gaussian. Particle filters (PFs) are effective in dealing with nonlinearity and non-Gaussianity. This work considers an IMM algorithm that includes a constant velocity model, a constant acceleration model and a 3D turning rate (3DTR) model for tracking three-dimensional (3D) target motion, using various combinations of nonlinear filters. In existing literature on combining IMM and particle filtering techniques to tackle difficult target maneuvers, a PF is usually used in every model In comparison, simulation results show that by using a computationally economical PF in the 3DTR model and Kalman filters in the remaining models, superior performance can be achieved with significant reduction in computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-autonomous reference data generation for perception performance evaluation Track association and fusion with heterogeneous local trackers Distributed detection of a nuclear radioactive source using fusion of correlated decisions Distributed data fusion algorithms for tracking a maneuvering target Multi agent systems for flexible and robust Bayesian information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1