提高网络故障诊断对观测值不确定性的鲁棒性

Jesper Grønbæk, H. Schwefel, A. Ceccarelli, A. Bondavalli
{"title":"提高网络故障诊断对观测值不确定性的鲁棒性","authors":"Jesper Grønbæk, H. Schwefel, A. Ceccarelli, A. Bondavalli","doi":"10.1109/NCA.2010.41","DOIUrl":null,"url":null,"abstract":"Performing decentralized network fault diagnosis based on network traffic is challenging. Besides inherent stochastic behaviour of observations, measurements may be subject to errors degrading diagnosis timeliness and accuracy. In this paper we present a novel approach in which we aim to mitigate issues of measurement errors by quantifying uncertainty. The uncertainty information is applied in the diagnostic component to improve its robustness. Three diagnosis components have been proposed based on the Hidden Markov Model formalism: (H0) representing a classical approach, (H1) a static compensation of (H0) to uncertainties and (H2) dynamically adapting diagnosis to uncertainty information. From uncertainty injection scenarios of added measurement noise we demonstrate how using uncertainty information can provide a structured approach of improving diagnosis.","PeriodicalId":276374,"journal":{"name":"2010 Ninth IEEE International Symposium on Network Computing and Applications","volume":"51 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving Robustness of Network Fault Diagnosis to Uncertainty in Observations\",\"authors\":\"Jesper Grønbæk, H. Schwefel, A. Ceccarelli, A. Bondavalli\",\"doi\":\"10.1109/NCA.2010.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing decentralized network fault diagnosis based on network traffic is challenging. Besides inherent stochastic behaviour of observations, measurements may be subject to errors degrading diagnosis timeliness and accuracy. In this paper we present a novel approach in which we aim to mitigate issues of measurement errors by quantifying uncertainty. The uncertainty information is applied in the diagnostic component to improve its robustness. Three diagnosis components have been proposed based on the Hidden Markov Model formalism: (H0) representing a classical approach, (H1) a static compensation of (H0) to uncertainties and (H2) dynamically adapting diagnosis to uncertainty information. From uncertainty injection scenarios of added measurement noise we demonstrate how using uncertainty information can provide a structured approach of improving diagnosis.\",\"PeriodicalId\":276374,\"journal\":{\"name\":\"2010 Ninth IEEE International Symposium on Network Computing and Applications\",\"volume\":\"51 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth IEEE International Symposium on Network Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA.2010.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth IEEE International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2010.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于网络流量进行分散的网络故障诊断具有一定的挑战性。除了观察的固有随机行为外,测量可能会出现降低诊断及时性和准确性的错误。在本文中,我们提出了一种新的方法,我们的目标是通过量化不确定性来减轻测量误差的问题。将不确定度信息应用到诊断组件中,提高了诊断组件的鲁棒性。基于隐马尔可夫模型的形式,提出了三个诊断组件:(H0)代表经典方法,(H1)对不确定性的静态补偿,(H2)对不确定性信息的动态适应诊断。从添加测量噪声的不确定度注入场景中,我们展示了如何使用不确定度信息可以提供改进诊断的结构化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Robustness of Network Fault Diagnosis to Uncertainty in Observations
Performing decentralized network fault diagnosis based on network traffic is challenging. Besides inherent stochastic behaviour of observations, measurements may be subject to errors degrading diagnosis timeliness and accuracy. In this paper we present a novel approach in which we aim to mitigate issues of measurement errors by quantifying uncertainty. The uncertainty information is applied in the diagnostic component to improve its robustness. Three diagnosis components have been proposed based on the Hidden Markov Model formalism: (H0) representing a classical approach, (H1) a static compensation of (H0) to uncertainties and (H2) dynamically adapting diagnosis to uncertainty information. From uncertainty injection scenarios of added measurement noise we demonstrate how using uncertainty information can provide a structured approach of improving diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Performance Model of Gossip-Based Update Propagation QoS-enabled Video Streaming in Wireless Sensor Networks Distributed Clustering Algorithms for Lossy Wireless Sensor Networks Colocation as a Service: Strategic and Operational Services for Cloud Colocation Under the Cloud: A Novel Content Addressable Data Framework for Cloud Parallelization to Create and Virtualize New Breeds of Cloud Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1