DE-RNN:预测非线性时间序列的概率密度函数

K. Yeo, Igor Melnyk, Nam H. Nguyen, Eun Kyung Lee
{"title":"DE-RNN:预测非线性时间序列的概率密度函数","authors":"K. Yeo, Igor Melnyk, Nam H. Nguyen, Eun Kyung Lee","doi":"10.1109/ICDM.2018.00085","DOIUrl":null,"url":null,"abstract":"Model-free identification of a nonlinear dynamical system from the noisy observations is of current interest due to its direct relevance to many applications in Industry 4.0. Making a prediction of such noisy time series constitutes a problem of learning the nonlinear time evolution of a probability distribution. Capability of most of the conventional time series models is limited when the underlying dynamics is nonlinear, multi-scale or when there is no prior knowledge at all on the system dynamics. We propose DE-RNN (Density Estimation Recurrent Neural Network) to learn the probability density function (PDF) of a stochastic process with an underlying nonlinear dynamics and compute the time evolution of the PDF for a probabilistic forecast. A Recurrent Neural Network (RNN)-based model is employed to learn a nonlinear operator for the temporal evolution of the stochastic process. We use a softmax layer for a numerical discretization of a smooth PDF, which transforms a function approximation problem to a classification task. A regularized cross-entropy method is introduced to impose a smoothness condition on the estimated probability distribution. A Monte Carlo procedure to compute the temporal evolution of the distribution for a multiple-step forecast is presented. It is shown that the proposed algorithm can learn the nonlinear multi-scale dynamics from the noisy observations and provides an effective tool to forecast time evolution of the underlying probability distribution. Evaluation of the algorithm on three synthetic and two real data sets shows advantage over the compared baselines, and a potential value to a wide range of problems in physics and engineering.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"DE-RNN: Forecasting the Probability Density Function of Nonlinear Time Series\",\"authors\":\"K. Yeo, Igor Melnyk, Nam H. Nguyen, Eun Kyung Lee\",\"doi\":\"10.1109/ICDM.2018.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-free identification of a nonlinear dynamical system from the noisy observations is of current interest due to its direct relevance to many applications in Industry 4.0. Making a prediction of such noisy time series constitutes a problem of learning the nonlinear time evolution of a probability distribution. Capability of most of the conventional time series models is limited when the underlying dynamics is nonlinear, multi-scale or when there is no prior knowledge at all on the system dynamics. We propose DE-RNN (Density Estimation Recurrent Neural Network) to learn the probability density function (PDF) of a stochastic process with an underlying nonlinear dynamics and compute the time evolution of the PDF for a probabilistic forecast. A Recurrent Neural Network (RNN)-based model is employed to learn a nonlinear operator for the temporal evolution of the stochastic process. We use a softmax layer for a numerical discretization of a smooth PDF, which transforms a function approximation problem to a classification task. A regularized cross-entropy method is introduced to impose a smoothness condition on the estimated probability distribution. A Monte Carlo procedure to compute the temporal evolution of the distribution for a multiple-step forecast is presented. It is shown that the proposed algorithm can learn the nonlinear multi-scale dynamics from the noisy observations and provides an effective tool to forecast time evolution of the underlying probability distribution. Evaluation of the algorithm on three synthetic and two real data sets shows advantage over the compared baselines, and a potential value to a wide range of problems in physics and engineering.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

从噪声观测中识别非线性动力系统的无模型是当前的兴趣,因为它与工业4.0中的许多应用直接相关。对这种有噪声的时间序列进行预测是一个学习概率分布的非线性时间演化的问题。当潜在的动力学是非线性的、多尺度的,或者没有关于系统动力学的先验知识时,大多数传统的时间序列模型的能力是有限的。我们提出了DE-RNN(密度估计递归神经网络)来学习具有潜在非线性动力学的随机过程的概率密度函数,并计算概率预测的概率密度函数的时间演化。采用基于递归神经网络(RNN)的模型学习随机过程的时间演化非线性算子。我们使用softmax层对光滑PDF进行数值离散化,将函数近似问题转化为分类任务。引入正则化交叉熵方法对估计的概率分布施加平滑条件。提出了一种计算多步预测分布时间演化的蒙特卡罗方法。结果表明,该算法能够从噪声观测中学习非线性多尺度动态,为预测底层概率分布的时间演化提供了有效工具。在三个合成数据集和两个真实数据集上对该算法进行了评估,结果表明该算法优于比较基线,并且对物理和工程中的广泛问题具有潜在价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DE-RNN: Forecasting the Probability Density Function of Nonlinear Time Series
Model-free identification of a nonlinear dynamical system from the noisy observations is of current interest due to its direct relevance to many applications in Industry 4.0. Making a prediction of such noisy time series constitutes a problem of learning the nonlinear time evolution of a probability distribution. Capability of most of the conventional time series models is limited when the underlying dynamics is nonlinear, multi-scale or when there is no prior knowledge at all on the system dynamics. We propose DE-RNN (Density Estimation Recurrent Neural Network) to learn the probability density function (PDF) of a stochastic process with an underlying nonlinear dynamics and compute the time evolution of the PDF for a probabilistic forecast. A Recurrent Neural Network (RNN)-based model is employed to learn a nonlinear operator for the temporal evolution of the stochastic process. We use a softmax layer for a numerical discretization of a smooth PDF, which transforms a function approximation problem to a classification task. A regularized cross-entropy method is introduced to impose a smoothness condition on the estimated probability distribution. A Monte Carlo procedure to compute the temporal evolution of the distribution for a multiple-step forecast is presented. It is shown that the proposed algorithm can learn the nonlinear multi-scale dynamics from the noisy observations and provides an effective tool to forecast time evolution of the underlying probability distribution. Evaluation of the algorithm on three synthetic and two real data sets shows advantage over the compared baselines, and a potential value to a wide range of problems in physics and engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1