对于非线性对象,传统控制器是否能正常工作以及何时能正常工作

R. Gessing
{"title":"对于非线性对象,传统控制器是否能正常工作以及何时能正常工作","authors":"R. Gessing","doi":"10.1109/MED.2010.5547666","DOIUrl":null,"url":null,"abstract":"It is shown that for strongly nonlinear plants taken from MATLAB Neural Network (NN) Control Systems Demos, the conventional controllers PD and P, which fulfill the demands of formulated in the paper the Criterion RD1 (Relative Degree =1), are significantly better then NN controllers appearing in these Demos. Moreover the conventional controllers operate well for significantly larger changes of the reference signal without the need of their re-tuning.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"27 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whether and when the conventional controllers may operate well with nonlinear plants\",\"authors\":\"R. Gessing\",\"doi\":\"10.1109/MED.2010.5547666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that for strongly nonlinear plants taken from MATLAB Neural Network (NN) Control Systems Demos, the conventional controllers PD and P, which fulfill the demands of formulated in the paper the Criterion RD1 (Relative Degree =1), are significantly better then NN controllers appearing in these Demos. Moreover the conventional controllers operate well for significantly larger changes of the reference signal without the need of their re-tuning.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"27 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结果表明,对于MATLAB神经网络(NN)控制系统演示中的强非线性对象,满足本文准则RD1(相对度=1)要求的常规控制器PD和P明显优于演示中的NN控制器。此外,传统的控制器可以很好地应对参考信号的较大变化,而无需重新调谐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Whether and when the conventional controllers may operate well with nonlinear plants
It is shown that for strongly nonlinear plants taken from MATLAB Neural Network (NN) Control Systems Demos, the conventional controllers PD and P, which fulfill the demands of formulated in the paper the Criterion RD1 (Relative Degree =1), are significantly better then NN controllers appearing in these Demos. Moreover the conventional controllers operate well for significantly larger changes of the reference signal without the need of their re-tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy crash avoidance and coordination between multi mobile robots A co-design approach for bilateral teleoperation over hybrid network Self-Scheduled Fuzzy Control of PWM DC-DC Converters An inverse optimality method to solve a class of second order optimal control problems Support Vector Regression for soft sensor design of nonlinear processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1