ST-GNN用于脑电运动图像分类

S. VivekB., A. Adarsh, Jay Gubbi, Kartik Muralidharan, R. K. Ramakrishnan, Arpan Pal
{"title":"ST-GNN用于脑电运动图像分类","authors":"S. VivekB., A. Adarsh, Jay Gubbi, Kartik Muralidharan, R. K. Ramakrishnan, Arpan Pal","doi":"10.1109/BHI56158.2022.9926806","DOIUrl":null,"url":null,"abstract":"Brain-computer interface (BCI) systems play an important role in medical applications such as stroke rehabilitation and neural prosthesis. These systems aim to decode the neural activity of the human brain measured using an Electroencephalogram (EEG). In this work, we consider the task of EEG-based motor imagery (intent) classification. Motor imagery (MI) refers to the imagination of the limb movement in the brain without actual action. Classification of motor imagery forms the basis for BCI-based prosthetic control. Existing approaches either use handcrafted features or features extracted from a deep neural network to interpret EEG-based MI. However, majority of the existing works fail to harness the functional connectivity within the brain that is captured using multiple EEG channels. In our work, we represent the input EEG signal as a graph where the nodes represent the EEG channels. The proposed approach uses a graph representation with a trainable weighted adjacency matrix to learn the optimal connectivity between nodes. Spatio-temporal features of the EEG signal are extracted via the proposed model that consists of a temporal convolution module and a graph convolution network. Experimental results and ablation study highlight the effectiveness of the proposed approach on the PhysioNet EEG motor movement and imagery dataset (EEG-MMIDB).","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ST-GNN for EEG Motor Imagery Classification\",\"authors\":\"S. VivekB., A. Adarsh, Jay Gubbi, Kartik Muralidharan, R. K. Ramakrishnan, Arpan Pal\",\"doi\":\"10.1109/BHI56158.2022.9926806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interface (BCI) systems play an important role in medical applications such as stroke rehabilitation and neural prosthesis. These systems aim to decode the neural activity of the human brain measured using an Electroencephalogram (EEG). In this work, we consider the task of EEG-based motor imagery (intent) classification. Motor imagery (MI) refers to the imagination of the limb movement in the brain without actual action. Classification of motor imagery forms the basis for BCI-based prosthetic control. Existing approaches either use handcrafted features or features extracted from a deep neural network to interpret EEG-based MI. However, majority of the existing works fail to harness the functional connectivity within the brain that is captured using multiple EEG channels. In our work, we represent the input EEG signal as a graph where the nodes represent the EEG channels. The proposed approach uses a graph representation with a trainable weighted adjacency matrix to learn the optimal connectivity between nodes. Spatio-temporal features of the EEG signal are extracted via the proposed model that consists of a temporal convolution module and a graph convolution network. Experimental results and ablation study highlight the effectiveness of the proposed approach on the PhysioNet EEG motor movement and imagery dataset (EEG-MMIDB).\",\"PeriodicalId\":347210,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI56158.2022.9926806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑机接口(BCI)系统在脑卒中康复和神经修复等医学应用中发挥着重要作用。这些系统旨在解码使用脑电图(EEG)测量的人类大脑的神经活动。在这项工作中,我们考虑了基于脑电图的运动意象(意图)分类任务。运动想象(MI)是指在没有实际动作的情况下,大脑对肢体运动的想象。运动意象的分类构成了基于脑机接口的假肢控制的基础。现有的方法要么使用手工制作的特征,要么使用从深度神经网络中提取的特征来解释基于脑电图的MI。然而,大多数现有的工作都未能利用使用多个脑电图通道捕获的大脑内部的功能连接。在我们的工作中,我们将输入的脑电信号表示为一个图,其中节点表示脑电信号通道。该方法使用带有可训练加权邻接矩阵的图表示来学习节点之间的最优连通性。该模型由时间卷积模块和图卷积网络组成,提取了脑电信号的时空特征。实验结果和消融研究强调了该方法在PhysioNet脑电运动和图像数据集(EEG- mmidb)上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ST-GNN for EEG Motor Imagery Classification
Brain-computer interface (BCI) systems play an important role in medical applications such as stroke rehabilitation and neural prosthesis. These systems aim to decode the neural activity of the human brain measured using an Electroencephalogram (EEG). In this work, we consider the task of EEG-based motor imagery (intent) classification. Motor imagery (MI) refers to the imagination of the limb movement in the brain without actual action. Classification of motor imagery forms the basis for BCI-based prosthetic control. Existing approaches either use handcrafted features or features extracted from a deep neural network to interpret EEG-based MI. However, majority of the existing works fail to harness the functional connectivity within the brain that is captured using multiple EEG channels. In our work, we represent the input EEG signal as a graph where the nodes represent the EEG channels. The proposed approach uses a graph representation with a trainable weighted adjacency matrix to learn the optimal connectivity between nodes. Spatio-temporal features of the EEG signal are extracted via the proposed model that consists of a temporal convolution module and a graph convolution network. Experimental results and ablation study highlight the effectiveness of the proposed approach on the PhysioNet EEG motor movement and imagery dataset (EEG-MMIDB).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BEBOP: Bidirectional dEep Brain cOnnectivity maPping Stabilizing Skeletal Pose Estimation using mmWave Radar via Dynamic Model and Filtering Behavioral Data Categorization for Transformers-based Models in Digital Health Gender Difference in Prognosis of Patients with Heart Failure: A Propensity Score Matching Analysis Influence of Sensor Position and Body Movements on Radar-Based Heart Rate Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1