基于在线CORDIC的二维IDCT的分布式算法实现

Yi Yang, Chunyan Wang, M. Ahmad, M. Swamy
{"title":"基于在线CORDIC的二维IDCT的分布式算法实现","authors":"Yi Yang, Chunyan Wang, M. Ahmad, M. Swamy","doi":"10.1109/ISSPA.2001.949836","DOIUrl":null,"url":null,"abstract":"This paper presents a cost-effective VLSI architecture for a two-dimensional (2-D) inverse discrete cosine transform (IDCT) core based on a modified on-line CORDIC algorithm. In order to have a low hardware complexity and to provide a good performance, the proposed design is based on the row-column decomposition approach and distributed arithmetic (DA). By reformulating the 1-D IDCT functions using the CORDIC approach, the proposed design requires about 60% less ROM than the conventional DA-based IDCT without using CORDIC. In our architecture the on-line algorithm is used to further reduce the area and to enhance the computation speed. The core operates on blocks of 8/spl times/8 pixels, with 12-bit and 8-bit precision for inputs and outputs, respectively. The proposed design has been synthesized by using 0.35-/spl mu/m CMOS technology. The simulation results show that the core for IDCT can run at 150 MHz with 60 Mpixel/s throughput, while meeting the requirement of the H.26x standard.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An on-line CORDIC based 2-D IDCT implementation using distributed arithmetic\",\"authors\":\"Yi Yang, Chunyan Wang, M. Ahmad, M. Swamy\",\"doi\":\"10.1109/ISSPA.2001.949836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a cost-effective VLSI architecture for a two-dimensional (2-D) inverse discrete cosine transform (IDCT) core based on a modified on-line CORDIC algorithm. In order to have a low hardware complexity and to provide a good performance, the proposed design is based on the row-column decomposition approach and distributed arithmetic (DA). By reformulating the 1-D IDCT functions using the CORDIC approach, the proposed design requires about 60% less ROM than the conventional DA-based IDCT without using CORDIC. In our architecture the on-line algorithm is used to further reduce the area and to enhance the computation speed. The core operates on blocks of 8/spl times/8 pixels, with 12-bit and 8-bit precision for inputs and outputs, respectively. The proposed design has been synthesized by using 0.35-/spl mu/m CMOS technology. The simulation results show that the core for IDCT can run at 150 MHz with 60 Mpixel/s throughput, while meeting the requirement of the H.26x standard.\",\"PeriodicalId\":236050,\"journal\":{\"name\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2001.949836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.949836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于改进的在线CORDIC算法的二维(2-D)反离散余弦变换(IDCT)核的高效VLSI结构。为了降低硬件复杂度并提供良好的性能,该设计基于行-列分解方法和分布式算法(DA)。通过使用CORDIC方法重新制定1-D IDCT功能,所提出的设计比不使用CORDIC的传统基于数据的IDCT减少了约60%的ROM。在我们的体系结构中,采用了在线算法,进一步减小了面积,提高了计算速度。核心在8/spl倍/8像素的块上运行,输入和输出分别具有12位和8位精度。采用0.35-/spl μ m CMOS工艺合成了该电路。仿真结果表明,该IDCT核心工作频率为150 MHz,吞吐量为60 Mpixel/s,满足H.26x标准的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An on-line CORDIC based 2-D IDCT implementation using distributed arithmetic
This paper presents a cost-effective VLSI architecture for a two-dimensional (2-D) inverse discrete cosine transform (IDCT) core based on a modified on-line CORDIC algorithm. In order to have a low hardware complexity and to provide a good performance, the proposed design is based on the row-column decomposition approach and distributed arithmetic (DA). By reformulating the 1-D IDCT functions using the CORDIC approach, the proposed design requires about 60% less ROM than the conventional DA-based IDCT without using CORDIC. In our architecture the on-line algorithm is used to further reduce the area and to enhance the computation speed. The core operates on blocks of 8/spl times/8 pixels, with 12-bit and 8-bit precision for inputs and outputs, respectively. The proposed design has been synthesized by using 0.35-/spl mu/m CMOS technology. The simulation results show that the core for IDCT can run at 150 MHz with 60 Mpixel/s throughput, while meeting the requirement of the H.26x standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large dynamic range time-frequency signal analysis with application to helicopter Doppler radar data Statistical analysis of neural network modeling and identification of nonlinear systems with memory Design of oversampled uniform DFT filter banks with reduced inband aliasing and delay constraints Identification of DCT signs for sub-block coding Skin color detection for face localization in human-machine communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1