基于BOW的电能表分类

W. Mo, Liqiang Pei, Qingdan Huang, Weijie Liao
{"title":"基于BOW的电能表分类","authors":"W. Mo, Liqiang Pei, Qingdan Huang, Weijie Liao","doi":"10.1145/3316615.3316654","DOIUrl":null,"url":null,"abstract":"The automatic verification of power meters is of great significance, and the key point is the classification of the power meter types. In this paper, we propose a power meter type recognition method based on machine vision. We construct a Bag-of-Words model(BOW), and extract the image features of the instrument, and construct a visual dictionary, based on which to train a support vector machine classifier to realize the automatic identification of the instrument type. The experimental results show that the proposed method achieves a classifiaction rate of 100% for several specific power meters, and is of great significance for applications.","PeriodicalId":268392,"journal":{"name":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric Power Meter Classification Based on BOW\",\"authors\":\"W. Mo, Liqiang Pei, Qingdan Huang, Weijie Liao\",\"doi\":\"10.1145/3316615.3316654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic verification of power meters is of great significance, and the key point is the classification of the power meter types. In this paper, we propose a power meter type recognition method based on machine vision. We construct a Bag-of-Words model(BOW), and extract the image features of the instrument, and construct a visual dictionary, based on which to train a support vector machine classifier to realize the automatic identification of the instrument type. The experimental results show that the proposed method achieves a classifiaction rate of 100% for several specific power meters, and is of great significance for applications.\",\"PeriodicalId\":268392,\"journal\":{\"name\":\"Proceedings of the 2019 8th International Conference on Software and Computer Applications\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 8th International Conference on Software and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316615.3316654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316615.3316654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电能表的自动检定具有重要意义,其中的关键是电能表类型的分类。本文提出了一种基于机器视觉的电能表类型识别方法。构建词袋模型(Bag-of-Words model, BOW),提取仪器的图像特征,构建视觉词典,在此基础上训练支持向量机分类器,实现仪器类型的自动识别。实验结果表明,该方法对几种特定功率计的分类率达到100%,具有重要的应用意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electric Power Meter Classification Based on BOW
The automatic verification of power meters is of great significance, and the key point is the classification of the power meter types. In this paper, we propose a power meter type recognition method based on machine vision. We construct a Bag-of-Words model(BOW), and extract the image features of the instrument, and construct a visual dictionary, based on which to train a support vector machine classifier to realize the automatic identification of the instrument type. The experimental results show that the proposed method achieves a classifiaction rate of 100% for several specific power meters, and is of great significance for applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BookCeption An Enhanced Key Security of Playfair Cipher Algorithm Adoption Issues in DevOps from the Perspective of Continuous Delivery Pipeline A User Attribute Recommendation Algorithm and Peer3D Technology based WebVR P2P Transmission Scheme Survey of Hyperledger Blockchain Frameworks: Case Study in FPT University's Cryptocurrency Wallets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1