饱和磷人工湿地对甘蔗生产的价值评价

Dina M R Mateus, M. Vaz, H. Pinho
{"title":"饱和磷人工湿地对甘蔗生产的价值评价","authors":"Dina M R Mateus, M. Vaz, H. Pinho","doi":"10.6000/1929-6002.2017.06.01.1","DOIUrl":null,"url":null,"abstract":"Constructed wetlands (CW) are a clean and environmentally friendly alternative to conventional wastewater treatment methods, namely in the removal of the nutrients responsible for the eutrophication of receiving water bodies, as is the case of phosphorus compounds. The materials used as CW filling can directly contribute to the removal of phosphorus compounds from wastewater, but with the operating time they tend to become saturated and treatment efficiency decreases. In order to evaluate the viability of producing an energy crop in phosphorus-saturated CW, sugarcane growth was monitored in two pilot-scale CW filled with two different expanded clay aggregates used for 10 years in wastewater treatment. This paper presents the results obtained during the first year of plant development in the plant-cane cycle. Morphologic aspects of sugarcane growth, such as height and average diameter of stems, average leaf area and number of new sprouts, have been monitored. The results obtained are comparable with those cited in the literature for traditional cultivation. Dry biomass productivity of 26.6 ton per hectare per year can be achieved. Estimated sucrose productivity can reach 13.5 ton per hectare per year, and related bioethanol production potential can be between 2.4 and 7.6 cubic meters per hectare per year, depending on the CW filter media used. It is concluded that the cultivation of sugarcane in CW allows to extend the life of these systems by reusing fillers, and simultaneously is an alternative to produce bioethanol raw-material without the use of scarce resources such as arable land, fresh water and plant nutrients.","PeriodicalId":394478,"journal":{"name":"Journal of Technology Innovations in Renewable Energy","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Valorisation of Phosphorus-Saturated Constructed Wetlands for the Production of Sugarcane\",\"authors\":\"Dina M R Mateus, M. Vaz, H. Pinho\",\"doi\":\"10.6000/1929-6002.2017.06.01.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructed wetlands (CW) are a clean and environmentally friendly alternative to conventional wastewater treatment methods, namely in the removal of the nutrients responsible for the eutrophication of receiving water bodies, as is the case of phosphorus compounds. The materials used as CW filling can directly contribute to the removal of phosphorus compounds from wastewater, but with the operating time they tend to become saturated and treatment efficiency decreases. In order to evaluate the viability of producing an energy crop in phosphorus-saturated CW, sugarcane growth was monitored in two pilot-scale CW filled with two different expanded clay aggregates used for 10 years in wastewater treatment. This paper presents the results obtained during the first year of plant development in the plant-cane cycle. Morphologic aspects of sugarcane growth, such as height and average diameter of stems, average leaf area and number of new sprouts, have been monitored. The results obtained are comparable with those cited in the literature for traditional cultivation. Dry biomass productivity of 26.6 ton per hectare per year can be achieved. Estimated sucrose productivity can reach 13.5 ton per hectare per year, and related bioethanol production potential can be between 2.4 and 7.6 cubic meters per hectare per year, depending on the CW filter media used. It is concluded that the cultivation of sugarcane in CW allows to extend the life of these systems by reusing fillers, and simultaneously is an alternative to produce bioethanol raw-material without the use of scarce resources such as arable land, fresh water and plant nutrients.\",\"PeriodicalId\":394478,\"journal\":{\"name\":\"Journal of Technology Innovations in Renewable Energy\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Technology Innovations in Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-6002.2017.06.01.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Innovations in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-6002.2017.06.01.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人工湿地(CW)是传统废水处理方法的一种清洁和环保的替代方法,即去除负责接收水体富营养化的营养物质,如磷化合物。作为连续波填料的材料可以直接促进废水中磷化合物的去除,但随着运行时间的延长,它们趋于饱和,处理效率下降。为了评估在含磷饱和连续环境中生产能源作物的可行性,研究人员在两个中试连续环境中监测了甘蔗的生长情况,两个中试连续环境中填充了两种不同的膨胀粘土集料,用于废水处理10年。本文介绍了植物-甘蔗循环中植物发育第一年的结果。甘蔗生长的形态学方面,如茎的高度和平均直径,平均叶面积和新芽的数量,已经被监测。所得结果与传统栽培文献中引用的结果相当。可实现每年每公顷26.6吨的干生物量生产力。根据使用的连续化学过滤介质,估计蔗糖产量可达到每年每公顷13.5吨,相关的生物乙醇生产潜力可在每年每公顷2.4至7.6立方米之间。综上所述,在连续栽培中种植甘蔗可以通过重复利用填充物来延长这些系统的寿命,同时也可以在不使用耕地、淡水和植物养分等稀缺资源的情况下生产生物乙醇原料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Valorisation of Phosphorus-Saturated Constructed Wetlands for the Production of Sugarcane
Constructed wetlands (CW) are a clean and environmentally friendly alternative to conventional wastewater treatment methods, namely in the removal of the nutrients responsible for the eutrophication of receiving water bodies, as is the case of phosphorus compounds. The materials used as CW filling can directly contribute to the removal of phosphorus compounds from wastewater, but with the operating time they tend to become saturated and treatment efficiency decreases. In order to evaluate the viability of producing an energy crop in phosphorus-saturated CW, sugarcane growth was monitored in two pilot-scale CW filled with two different expanded clay aggregates used for 10 years in wastewater treatment. This paper presents the results obtained during the first year of plant development in the plant-cane cycle. Morphologic aspects of sugarcane growth, such as height and average diameter of stems, average leaf area and number of new sprouts, have been monitored. The results obtained are comparable with those cited in the literature for traditional cultivation. Dry biomass productivity of 26.6 ton per hectare per year can be achieved. Estimated sucrose productivity can reach 13.5 ton per hectare per year, and related bioethanol production potential can be between 2.4 and 7.6 cubic meters per hectare per year, depending on the CW filter media used. It is concluded that the cultivation of sugarcane in CW allows to extend the life of these systems by reusing fillers, and simultaneously is an alternative to produce bioethanol raw-material without the use of scarce resources such as arable land, fresh water and plant nutrients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Technological Surveillance in Electric River Mobility for Cargo Transport on the Atrato River, Colombia Study of Technological Surveillance in Electric River Mobility for Cargo Transport on the Atrato River, Colombia A Comparative Study on the Renewable Energy Related Curriculums in the Universities in Guangdong- Hong Kong- Macao Greater Bay Area Numerical Modeling Prediction of Thermal Storage during Discharging Phase, PV- Thermal Solar and with Nanofluids Bathocuproine Buffer Layer Effect on the Performance of Inverted Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1