{"title":"空间适应性受试者水平分析改善了fMRI组研究的随机效应","authors":"S. Badillo, T. Vincent, P. Ciuciu","doi":"10.1109/ISABEL.2010.5702904","DOIUrl":null,"url":null,"abstract":"Inter-subject analysis of functional Magnetic Resonance Imaging (fMRI) data relies on single intra-subject studies, which are usually conducted using a massively univariate approach. In this paper, we investigate the impact of an improved intra-subject analysis on group studies. Our approach is based on the use of Adaptive Spatial Mixture Models within a joint detection-estimation (JDE) framework [1]. In this setting, spatial variability is achieved at a regional scale by the explicit characterization of the hemodynamic filter and at the voxel scale by an adaptive spatial correlation model between condition-specific effects. For the group statistics, we conducted several Random effect analyses (RFX) which relied either on SPM or JDE intra-subject analyses. We performed a comparative study on two different real datasets involving the same paradigm and the same 15 subjects but eliciting different noise levels by varying the acceleration factor (R=2 and R=4) in parallel MRI acquisition. We show that brain activations appear more spatially resolved using JDE instead of SPM and that a better sensitivity is achieved. Moreover, the JDE framework provides more robust detection performance by maintaining satisfying results on our most noisy real dataset.","PeriodicalId":165367,"journal":{"name":"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially adaptive subject level analyses improve random effects fMRI group studies\",\"authors\":\"S. Badillo, T. Vincent, P. Ciuciu\",\"doi\":\"10.1109/ISABEL.2010.5702904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-subject analysis of functional Magnetic Resonance Imaging (fMRI) data relies on single intra-subject studies, which are usually conducted using a massively univariate approach. In this paper, we investigate the impact of an improved intra-subject analysis on group studies. Our approach is based on the use of Adaptive Spatial Mixture Models within a joint detection-estimation (JDE) framework [1]. In this setting, spatial variability is achieved at a regional scale by the explicit characterization of the hemodynamic filter and at the voxel scale by an adaptive spatial correlation model between condition-specific effects. For the group statistics, we conducted several Random effect analyses (RFX) which relied either on SPM or JDE intra-subject analyses. We performed a comparative study on two different real datasets involving the same paradigm and the same 15 subjects but eliciting different noise levels by varying the acceleration factor (R=2 and R=4) in parallel MRI acquisition. We show that brain activations appear more spatially resolved using JDE instead of SPM and that a better sensitivity is achieved. Moreover, the JDE framework provides more robust detection performance by maintaining satisfying results on our most noisy real dataset.\",\"PeriodicalId\":165367,\"journal\":{\"name\":\"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISABEL.2010.5702904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISABEL.2010.5702904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatially adaptive subject level analyses improve random effects fMRI group studies
Inter-subject analysis of functional Magnetic Resonance Imaging (fMRI) data relies on single intra-subject studies, which are usually conducted using a massively univariate approach. In this paper, we investigate the impact of an improved intra-subject analysis on group studies. Our approach is based on the use of Adaptive Spatial Mixture Models within a joint detection-estimation (JDE) framework [1]. In this setting, spatial variability is achieved at a regional scale by the explicit characterization of the hemodynamic filter and at the voxel scale by an adaptive spatial correlation model between condition-specific effects. For the group statistics, we conducted several Random effect analyses (RFX) which relied either on SPM or JDE intra-subject analyses. We performed a comparative study on two different real datasets involving the same paradigm and the same 15 subjects but eliciting different noise levels by varying the acceleration factor (R=2 and R=4) in parallel MRI acquisition. We show that brain activations appear more spatially resolved using JDE instead of SPM and that a better sensitivity is achieved. Moreover, the JDE framework provides more robust detection performance by maintaining satisfying results on our most noisy real dataset.