面向ADAS和自动驾驶的车道级地图的地图相对定位

Richard Matthaei, Gerrit Bagschik, M. Maurer
{"title":"面向ADAS和自动驾驶的车道级地图的地图相对定位","authors":"Richard Matthaei, Gerrit Bagschik, M. Maurer","doi":"10.1109/IVS.2014.6856428","DOIUrl":null,"url":null,"abstract":"Future advanced driver assistant systems put high demands on the environmental perception especially in urban environments. Today's on-board sensors and on-board algorithms still do not reach a satisfying level of development from the point of view of robustness and availability. Thus, map data is often used as an additional data input to support the on-board sensor system and algorithms. The usage of map data requires a highly correct pose within the map even in cases of positioning errors by global navigation satellite systems or geometrical errors in the map data. In this paper we propose and compare two approaches for map-relative localization exclusively using a lane-level map. These approaches deliberately avoid the usage of detailed a priori maps containing point-landmarks, grids or road-markings. Additionally, we propose a grid-based on-board fusion of road-marking information and stationary obstacles addressing the problem of missing or incomplete road-markings in urban scenarios.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Map-relative localization in lane-level maps for ADAS and autonomous driving\",\"authors\":\"Richard Matthaei, Gerrit Bagschik, M. Maurer\",\"doi\":\"10.1109/IVS.2014.6856428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future advanced driver assistant systems put high demands on the environmental perception especially in urban environments. Today's on-board sensors and on-board algorithms still do not reach a satisfying level of development from the point of view of robustness and availability. Thus, map data is often used as an additional data input to support the on-board sensor system and algorithms. The usage of map data requires a highly correct pose within the map even in cases of positioning errors by global navigation satellite systems or geometrical errors in the map data. In this paper we propose and compare two approaches for map-relative localization exclusively using a lane-level map. These approaches deliberately avoid the usage of detailed a priori maps containing point-landmarks, grids or road-markings. Additionally, we propose a grid-based on-board fusion of road-marking information and stationary obstacles addressing the problem of missing or incomplete road-markings in urban scenarios.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

未来的高级驾驶辅助系统对环境感知提出了更高的要求,尤其是在城市环境中。从鲁棒性和可用性的角度来看,目前的车载传感器和车载算法还没有达到令人满意的发展水平。因此,地图数据通常被用作额外的数据输入,以支持车载传感器系统和算法。即使在全球导航卫星系统的定位错误或地图数据的几何错误的情况下,使用地图数据也需要在地图内高度正确的姿态。在本文中,我们提出并比较了两种仅使用车道级地图的地图相对定位方法。这些方法故意避免使用包含点地标、网格或道路标记的详细先验地图。此外,我们提出了一种基于网格的道路标记信息和固定障碍物的车载融合方法,以解决城市场景中道路标记缺失或不完整的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Map-relative localization in lane-level maps for ADAS and autonomous driving
Future advanced driver assistant systems put high demands on the environmental perception especially in urban environments. Today's on-board sensors and on-board algorithms still do not reach a satisfying level of development from the point of view of robustness and availability. Thus, map data is often used as an additional data input to support the on-board sensor system and algorithms. The usage of map data requires a highly correct pose within the map even in cases of positioning errors by global navigation satellite systems or geometrical errors in the map data. In this paper we propose and compare two approaches for map-relative localization exclusively using a lane-level map. These approaches deliberately avoid the usage of detailed a priori maps containing point-landmarks, grids or road-markings. Additionally, we propose a grid-based on-board fusion of road-marking information and stationary obstacles addressing the problem of missing or incomplete road-markings in urban scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPS precise positioning with pseudorange evaluation using 3-dimensional maps Vehicle safety evaluation based on driver drowsiness and distracted and impaired driving performance using evidence theory Concept-aware ensemble system for pedestrian detection Pose detection in truck and trailer combinations for advanced driver assistance systems Environment perception for inner-city driver assistance and highly-automated driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1