黑麦抗赤霉病相关蛋白质组学成分的鉴定

D. Perlikowski, H. Wiśniewska, T. Góral, P. Ochodzki, M. Majka, I. Pawłowicz, J. Belter, A. Kosmala
{"title":"黑麦抗赤霉病相关蛋白质组学成分的鉴定","authors":"D. Perlikowski, H. Wiśniewska, T. Góral, P. Ochodzki, M. Majka, I. Pawłowicz, J. Belter, A. Kosmala","doi":"10.5423/PPJ.OA.11.2018.0278","DOIUrl":null,"url":null,"abstract":"Rye was used here to dissect molecular mechanisms of resistance to Fusarium head blight (FHB) and to go deeper with our understanding of that process in cereals. F. culmorum-damaged kernels of two lines different in their potential of resistance to FHB were analyzed using two-dimensional gel electrophoresis and mass spectrometry to identify resistance markers. The proteome profiling was accompanied by measurements of α- and β-amylase activities and mycotoxin content. The proteomic studies indicated a total of 18 spots with clear differences in protein abundance between the more resistant and more susceptible rye lines after infection. Eight proteins were involved in carbohydrate metabolism of which six proteins showed a significantly higher abundance in the resistant line. The other proteins recognized here were involved in stress response and redox homeostasis. Three remaining proteins were associated with protease inhibition/resistance and lignin biosynthesis, revealing higher accumulation levels in the susceptible rye line. After inoculation, the activities of α- and β-amylases, higher in the susceptible line, were probably responsible for a higher level of starch decomposition after infection and a higher susceptibility to FHB. The presented results could be a good reference for further research to improve crop resistance to FHB.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Proteomic Components Associated with Resistance to Fusarium Head Blight in Rye\",\"authors\":\"D. Perlikowski, H. Wiśniewska, T. Góral, P. Ochodzki, M. Majka, I. Pawłowicz, J. Belter, A. Kosmala\",\"doi\":\"10.5423/PPJ.OA.11.2018.0278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rye was used here to dissect molecular mechanisms of resistance to Fusarium head blight (FHB) and to go deeper with our understanding of that process in cereals. F. culmorum-damaged kernels of two lines different in their potential of resistance to FHB were analyzed using two-dimensional gel electrophoresis and mass spectrometry to identify resistance markers. The proteome profiling was accompanied by measurements of α- and β-amylase activities and mycotoxin content. The proteomic studies indicated a total of 18 spots with clear differences in protein abundance between the more resistant and more susceptible rye lines after infection. Eight proteins were involved in carbohydrate metabolism of which six proteins showed a significantly higher abundance in the resistant line. The other proteins recognized here were involved in stress response and redox homeostasis. Three remaining proteins were associated with protease inhibition/resistance and lignin biosynthesis, revealing higher accumulation levels in the susceptible rye line. After inoculation, the activities of α- and β-amylases, higher in the susceptible line, were probably responsible for a higher level of starch decomposition after infection and a higher susceptibility to FHB. The presented results could be a good reference for further research to improve crop resistance to FHB.\",\"PeriodicalId\":101515,\"journal\":{\"name\":\"The Plant Pathology Journal\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Pathology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5423/PPJ.OA.11.2018.0278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Pathology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.11.2018.0278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究以黑麦为研究对象,剖析了小麦抗赤霉病的分子机制,并进一步加深了我们对这一过程的认识。采用双向凝胶电泳和质谱分析方法,对两种不同抗性品系的枯霉病受损籽粒进行了抗性标记鉴定。蛋白质组学分析伴随着α-和β-淀粉酶活性和霉菌毒素含量的测定。蛋白质组学研究表明,抗性较强的黑麦品系和易感品系在侵染后共有18个位点的蛋白质丰度存在明显差异。8种蛋白参与碳水化合物代谢,其中6种蛋白在抗性品系中丰度显著提高。在这里识别的其他蛋白质参与应激反应和氧化还原稳态。其余3种蛋白与蛋白酶抑制/抗性和木质素生物合成相关,在黑麦敏感品系中积累水平较高。接种后,α-淀粉酶和β-淀粉酶的活性在易感品系中较高,这可能是感染后淀粉分解水平较高和对FHB易感性较高的原因。本研究结果可为进一步研究提高作物对赤霉病的抗性提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Proteomic Components Associated with Resistance to Fusarium Head Blight in Rye
Rye was used here to dissect molecular mechanisms of resistance to Fusarium head blight (FHB) and to go deeper with our understanding of that process in cereals. F. culmorum-damaged kernels of two lines different in their potential of resistance to FHB were analyzed using two-dimensional gel electrophoresis and mass spectrometry to identify resistance markers. The proteome profiling was accompanied by measurements of α- and β-amylase activities and mycotoxin content. The proteomic studies indicated a total of 18 spots with clear differences in protein abundance between the more resistant and more susceptible rye lines after infection. Eight proteins were involved in carbohydrate metabolism of which six proteins showed a significantly higher abundance in the resistant line. The other proteins recognized here were involved in stress response and redox homeostasis. Three remaining proteins were associated with protease inhibition/resistance and lignin biosynthesis, revealing higher accumulation levels in the susceptible rye line. After inoculation, the activities of α- and β-amylases, higher in the susceptible line, were probably responsible for a higher level of starch decomposition after infection and a higher susceptibility to FHB. The presented results could be a good reference for further research to improve crop resistance to FHB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots Twindemic Threats of Weeds Coinfected with Tomato Yellow Leaf Curl Virus and Tomato Spotted Wilt Virus as Viral Reservoirs in Tomato Greenhouses Antifungal Properties of Streptomyces bacillaris S8 for Biological Control Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1