整数时间序列的二项细化模型

Robert C. Jung, A. Tremayne
{"title":"整数时间序列的二项细化模型","authors":"Robert C. Jung, A. Tremayne","doi":"10.1191/1471082X06st114oa","DOIUrl":null,"url":null,"abstract":"This article considers some simple observation-driven time series models for counts. We provide a brief description of the class of integer-valued autoregressive (INAR) and integer-valued moving average (INMA) processes. These classes of models may be attractive when the data exhibit a significant serial dependence structure. We, therefore, briefly review various testing procedures useful for assessing the serial correlation in the data. Once it is established that the data are not serially independent, suitable INAR or INMA processes may be employed to model the data. In the important first order INAR model, we discuss various methods of estimating the structural parameters of the process. We also give a short account of the extension of some of these estimation procedures to second order INAR models. Moving average counterparts of both models are also entertained. Throughout, the models and methods are illustrated in the context of a famous data set from the branching process literature that turns out to be surprisingly difficult to model satisfactorily.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Binomial thinning models for integer time series\",\"authors\":\"Robert C. Jung, A. Tremayne\",\"doi\":\"10.1191/1471082X06st114oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers some simple observation-driven time series models for counts. We provide a brief description of the class of integer-valued autoregressive (INAR) and integer-valued moving average (INMA) processes. These classes of models may be attractive when the data exhibit a significant serial dependence structure. We, therefore, briefly review various testing procedures useful for assessing the serial correlation in the data. Once it is established that the data are not serially independent, suitable INAR or INMA processes may be employed to model the data. In the important first order INAR model, we discuss various methods of estimating the structural parameters of the process. We also give a short account of the extension of some of these estimation procedures to second order INAR models. Moving average counterparts of both models are also entertained. Throughout, the models and methods are illustrated in the context of a famous data set from the branching process literature that turns out to be surprisingly difficult to model satisfactorily.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X06st114oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X06st114oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

本文考虑一些用于计数的简单的观察驱动时间序列模型。我们简要描述了整值自回归(INAR)和整值移动平均(INMA)过程。当数据表现出显著的序列依赖结构时,这类模型可能很有吸引力。因此,我们简要回顾了用于评估数据序列相关性的各种测试程序。一旦确定数据不是序列独立的,就可以采用适当的INAR或INMA过程对数据进行建模。在重要的一阶INAR模型中,我们讨论了各种估计过程结构参数的方法。我们还简要介绍了将这些估计过程中的一些扩展到二阶INAR模型。两种模型的移动平均对应也被考虑。在整个过程中,模型和方法都是在分支过程文献中一个著名的数据集的背景下进行说明的,结果是令人惊讶的难以令人满意地建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Binomial thinning models for integer time series
This article considers some simple observation-driven time series models for counts. We provide a brief description of the class of integer-valued autoregressive (INAR) and integer-valued moving average (INMA) processes. These classes of models may be attractive when the data exhibit a significant serial dependence structure. We, therefore, briefly review various testing procedures useful for assessing the serial correlation in the data. Once it is established that the data are not serially independent, suitable INAR or INMA processes may be employed to model the data. In the important first order INAR model, we discuss various methods of estimating the structural parameters of the process. We also give a short account of the extension of some of these estimation procedures to second order INAR models. Moving average counterparts of both models are also entertained. Throughout, the models and methods are illustrated in the context of a famous data set from the branching process literature that turns out to be surprisingly difficult to model satisfactorily.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1