基于重字共现的词辨别

A. El-Nasan, S. Veeramachaneni, G. Nagy
{"title":"基于重字共现的词辨别","authors":"A. El-Nasan, S. Veeramachaneni, G. Nagy","doi":"10.1109/ICDAR.2001.953773","DOIUrl":null,"url":null,"abstract":"Very few pairs of English words share exactly the same letter bigrams. This linguistic property can be exploited to bring lexical context into the classification stage of a word recognition system. The lexical n-gram matches between every word in a lexicon and a subset of reference words can be precomputed. If a match function can detect matching segments of at least n-gram length from the feature representation of words, then an unknown word can be recognized by determining the subset of reference words having an n-gram match at the feature level with the unknown word. We show that with a reasonable number of reference words, bigrams represent the best compromise between the recall ability of single letters and the precision of trigrams. Our simulations indicate that using a longer reference list can compensate errors in feature extraction. The algorithm is fast enough, even with a slow processor, for human-computer interaction.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Word discrimination based on bigram co-occurrences\",\"authors\":\"A. El-Nasan, S. Veeramachaneni, G. Nagy\",\"doi\":\"10.1109/ICDAR.2001.953773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Very few pairs of English words share exactly the same letter bigrams. This linguistic property can be exploited to bring lexical context into the classification stage of a word recognition system. The lexical n-gram matches between every word in a lexicon and a subset of reference words can be precomputed. If a match function can detect matching segments of at least n-gram length from the feature representation of words, then an unknown word can be recognized by determining the subset of reference words having an n-gram match at the feature level with the unknown word. We show that with a reasonable number of reference words, bigrams represent the best compromise between the recall ability of single letters and the precision of trigrams. Our simulations indicate that using a longer reference list can compensate errors in feature extraction. The algorithm is fast enough, even with a slow processor, for human-computer interaction.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

很少有英语单词对具有完全相同的字母组合。这一语言特性可用于将词汇语境引入词识别系统的分类阶段。词汇库中每个单词与参考单词子集之间的词汇n-gram匹配可以预先计算。如果匹配函数可以从单词的特征表示中检测到长度至少为n个gram的匹配片段,则可以通过确定在特征级别上与未知单词具有n个gram匹配的参考单词子集来识别未知单词。我们表明,在合理数量的参考词下,双字母代表了单字母记忆能力和三字母记忆精度之间的最佳折衷。仿真结果表明,使用较长的参考列表可以弥补特征提取中的误差。即使处理器速度较慢,该算法对于人机交互来说也足够快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Word discrimination based on bigram co-occurrences
Very few pairs of English words share exactly the same letter bigrams. This linguistic property can be exploited to bring lexical context into the classification stage of a word recognition system. The lexical n-gram matches between every word in a lexicon and a subset of reference words can be precomputed. If a match function can detect matching segments of at least n-gram length from the feature representation of words, then an unknown word can be recognized by determining the subset of reference words having an n-gram match at the feature level with the unknown word. We show that with a reasonable number of reference words, bigrams represent the best compromise between the recall ability of single letters and the precision of trigrams. Our simulations indicate that using a longer reference list can compensate errors in feature extraction. The algorithm is fast enough, even with a slow processor, for human-computer interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1