{"title":"基于重字共现的词辨别","authors":"A. El-Nasan, S. Veeramachaneni, G. Nagy","doi":"10.1109/ICDAR.2001.953773","DOIUrl":null,"url":null,"abstract":"Very few pairs of English words share exactly the same letter bigrams. This linguistic property can be exploited to bring lexical context into the classification stage of a word recognition system. The lexical n-gram matches between every word in a lexicon and a subset of reference words can be precomputed. If a match function can detect matching segments of at least n-gram length from the feature representation of words, then an unknown word can be recognized by determining the subset of reference words having an n-gram match at the feature level with the unknown word. We show that with a reasonable number of reference words, bigrams represent the best compromise between the recall ability of single letters and the precision of trigrams. Our simulations indicate that using a longer reference list can compensate errors in feature extraction. The algorithm is fast enough, even with a slow processor, for human-computer interaction.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Word discrimination based on bigram co-occurrences\",\"authors\":\"A. El-Nasan, S. Veeramachaneni, G. Nagy\",\"doi\":\"10.1109/ICDAR.2001.953773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Very few pairs of English words share exactly the same letter bigrams. This linguistic property can be exploited to bring lexical context into the classification stage of a word recognition system. The lexical n-gram matches between every word in a lexicon and a subset of reference words can be precomputed. If a match function can detect matching segments of at least n-gram length from the feature representation of words, then an unknown word can be recognized by determining the subset of reference words having an n-gram match at the feature level with the unknown word. We show that with a reasonable number of reference words, bigrams represent the best compromise between the recall ability of single letters and the precision of trigrams. Our simulations indicate that using a longer reference list can compensate errors in feature extraction. The algorithm is fast enough, even with a slow processor, for human-computer interaction.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Word discrimination based on bigram co-occurrences
Very few pairs of English words share exactly the same letter bigrams. This linguistic property can be exploited to bring lexical context into the classification stage of a word recognition system. The lexical n-gram matches between every word in a lexicon and a subset of reference words can be precomputed. If a match function can detect matching segments of at least n-gram length from the feature representation of words, then an unknown word can be recognized by determining the subset of reference words having an n-gram match at the feature level with the unknown word. We show that with a reasonable number of reference words, bigrams represent the best compromise between the recall ability of single letters and the precision of trigrams. Our simulations indicate that using a longer reference list can compensate errors in feature extraction. The algorithm is fast enough, even with a slow processor, for human-computer interaction.