Lei Chen, Jiacheng Zhao, Chenxi Wang, Ting Cao, J. Zigman, Haris Volos, O. Mutlu, Fang Lv, Xiaobing Feng, G. Xu, Huimin Cui
{"title":"支持混合内存上多个大数据处理框架的统一整体内存管理","authors":"Lei Chen, Jiacheng Zhao, Chenxi Wang, Ting Cao, J. Zigman, Haris Volos, O. Mutlu, Fang Lv, Xiaobing Feng, G. Xu, Huimin Cui","doi":"10.1145/3511211","DOIUrl":null,"url":null,"abstract":"To process real-world datasets, modern data-parallel systems often require extremely large amounts of memory, which are both costly and energy inefficient. Emerging non-volatile memory (NVM) technologies offer high capacity compared to DRAM and low energy compared to SSDs. Hence, NVMs have the potential to fundamentally change the dichotomy between DRAM and durable storage in Big Data processing. However, most Big Data applications are written in managed languages and executed on top of a managed runtime that already performs various dimensions of memory management. Supporting hybrid physical memories adds a new dimension, creating unique challenges in data replacement. This article proposes Panthera, a semantics-aware, fully automated memory management technique for Big Data processing over hybrid memories. Panthera analyzes user programs on a Big Data system to infer their coarse-grained access patterns, which are then passed to the Panthera runtime for efficient data placement and migration. For Big Data applications, the coarse-grained data division information is accurate enough to guide the GC for data layout, which hardly incurs overhead in data monitoring and moving. We implemented Panthera in OpenJDK and Apache Spark. Based on Big Data applications’ memory access pattern, we also implemented a new profiling-guided optimization strategy, which is transparent to applications. With this optimization, our extensive evaluation demonstrates that Panthera reduces energy by 32–53% at less than 1% time overhead on average. To show Panthera’s applicability, we extend it to QuickCached, a pure Java implementation of Memcached. Our evaluation results show that Panthera reduces energy by 28.7% at 5.2% time overhead on average.","PeriodicalId":318554,"journal":{"name":"ACM Transactions on Computer Systems (TOCS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unified Holistic Memory Management Supporting Multiple Big Data Processing Frameworks over Hybrid Memories\",\"authors\":\"Lei Chen, Jiacheng Zhao, Chenxi Wang, Ting Cao, J. Zigman, Haris Volos, O. Mutlu, Fang Lv, Xiaobing Feng, G. Xu, Huimin Cui\",\"doi\":\"10.1145/3511211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To process real-world datasets, modern data-parallel systems often require extremely large amounts of memory, which are both costly and energy inefficient. Emerging non-volatile memory (NVM) technologies offer high capacity compared to DRAM and low energy compared to SSDs. Hence, NVMs have the potential to fundamentally change the dichotomy between DRAM and durable storage in Big Data processing. However, most Big Data applications are written in managed languages and executed on top of a managed runtime that already performs various dimensions of memory management. Supporting hybrid physical memories adds a new dimension, creating unique challenges in data replacement. This article proposes Panthera, a semantics-aware, fully automated memory management technique for Big Data processing over hybrid memories. Panthera analyzes user programs on a Big Data system to infer their coarse-grained access patterns, which are then passed to the Panthera runtime for efficient data placement and migration. For Big Data applications, the coarse-grained data division information is accurate enough to guide the GC for data layout, which hardly incurs overhead in data monitoring and moving. We implemented Panthera in OpenJDK and Apache Spark. Based on Big Data applications’ memory access pattern, we also implemented a new profiling-guided optimization strategy, which is transparent to applications. With this optimization, our extensive evaluation demonstrates that Panthera reduces energy by 32–53% at less than 1% time overhead on average. To show Panthera’s applicability, we extend it to QuickCached, a pure Java implementation of Memcached. Our evaluation results show that Panthera reduces energy by 28.7% at 5.2% time overhead on average.\",\"PeriodicalId\":318554,\"journal\":{\"name\":\"ACM Transactions on Computer Systems (TOCS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems (TOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unified Holistic Memory Management Supporting Multiple Big Data Processing Frameworks over Hybrid Memories
To process real-world datasets, modern data-parallel systems often require extremely large amounts of memory, which are both costly and energy inefficient. Emerging non-volatile memory (NVM) technologies offer high capacity compared to DRAM and low energy compared to SSDs. Hence, NVMs have the potential to fundamentally change the dichotomy between DRAM and durable storage in Big Data processing. However, most Big Data applications are written in managed languages and executed on top of a managed runtime that already performs various dimensions of memory management. Supporting hybrid physical memories adds a new dimension, creating unique challenges in data replacement. This article proposes Panthera, a semantics-aware, fully automated memory management technique for Big Data processing over hybrid memories. Panthera analyzes user programs on a Big Data system to infer their coarse-grained access patterns, which are then passed to the Panthera runtime for efficient data placement and migration. For Big Data applications, the coarse-grained data division information is accurate enough to guide the GC for data layout, which hardly incurs overhead in data monitoring and moving. We implemented Panthera in OpenJDK and Apache Spark. Based on Big Data applications’ memory access pattern, we also implemented a new profiling-guided optimization strategy, which is transparent to applications. With this optimization, our extensive evaluation demonstrates that Panthera reduces energy by 32–53% at less than 1% time overhead on average. To show Panthera’s applicability, we extend it to QuickCached, a pure Java implementation of Memcached. Our evaluation results show that Panthera reduces energy by 28.7% at 5.2% time overhead on average.