朱诺号大气中微子事件的重建

Rosmarie Wirth, M. Rifai, Marta Molla Colomer
{"title":"朱诺号大气中微子事件的重建","authors":"Rosmarie Wirth, M. Rifai, Marta Molla Colomer","doi":"10.22323/1.414.1114","DOIUrl":null,"url":null,"abstract":"The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multipurpose liquid-scintillator detector whose main goal is the determination of the neutrino mass ordering using the measurement of the vacuum dominated oscillation pattern of reactor anti-neutrinos from eight reactor cores. The sensitivity of JUNO to the neutrino mass ordering can be enhanced via a combined analysis of reactor anti-neutrinos with atmospheric neutrinos, in which the matter-dominated oscillation depends on the mass ordering. Such an analysis requires a precise reconstruction of the energy and the direction of atmospheric neutrinos. As the largest liquid-scintillator detector ever built, JUNO will also be able to measure the atmospheric neutrino flux down to lower energies than the current large Cherenkov detectors. This poster presents the reconstruction of the energy of atmospheric neutrinos with a machine learning approach and the direction reconstruction with a novel approach. While the machine learning approach relies on the geometrical representation of the detector with a Graph Convolutional Neural Network, the latter focuses on the reconstruction of the photon emission topology in the JUNO detector. The results presented are based on Monte-Carlo simulations, including for the first time the full electronics response, calibration and waveform reconstruction.","PeriodicalId":286451,"journal":{"name":"Proceedings of 41st International Conference on High Energy physics — PoS(ICHEP2022)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of atmospheric neutrino events at JUNO\",\"authors\":\"Rosmarie Wirth, M. Rifai, Marta Molla Colomer\",\"doi\":\"10.22323/1.414.1114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multipurpose liquid-scintillator detector whose main goal is the determination of the neutrino mass ordering using the measurement of the vacuum dominated oscillation pattern of reactor anti-neutrinos from eight reactor cores. The sensitivity of JUNO to the neutrino mass ordering can be enhanced via a combined analysis of reactor anti-neutrinos with atmospheric neutrinos, in which the matter-dominated oscillation depends on the mass ordering. Such an analysis requires a precise reconstruction of the energy and the direction of atmospheric neutrinos. As the largest liquid-scintillator detector ever built, JUNO will also be able to measure the atmospheric neutrino flux down to lower energies than the current large Cherenkov detectors. This poster presents the reconstruction of the energy of atmospheric neutrinos with a machine learning approach and the direction reconstruction with a novel approach. While the machine learning approach relies on the geometrical representation of the detector with a Graph Convolutional Neural Network, the latter focuses on the reconstruction of the photon emission topology in the JUNO detector. The results presented are based on Monte-Carlo simulations, including for the first time the full electronics response, calibration and waveform reconstruction.\",\"PeriodicalId\":286451,\"journal\":{\"name\":\"Proceedings of 41st International Conference on High Energy physics — PoS(ICHEP2022)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 41st International Conference on High Energy physics — PoS(ICHEP2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.414.1114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 41st International Conference on High Energy physics — PoS(ICHEP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.414.1114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

江门地下中微子天文台(JUNO)是一个20万吨的多用途液体闪烁探测器,其主要目标是通过测量来自8个反应堆堆芯的反应堆反中微子的真空主导振荡模式来确定中微子的质量顺序。JUNO对中微子质量有序的灵敏度可以通过对反应堆反中微子和大气中微子的联合分析来增强,其中物质主导振荡取决于质量有序。这样的分析需要精确地重建大气中微子的能量和方向。作为迄今为止建造的最大的液体闪烁体探测器,JUNO还将能够测量大气中的中微子通量,其能量低于目前的大型切伦科夫探测器。这张海报展示了用机器学习方法重建大气中微子的能量和用一种新的方法重建方向。而机器学习方法依赖于探测器的几何表示与图卷积神经网络,后者侧重于光子发射拓扑在JUNO探测器的重建。结果是基于蒙特卡罗模拟,包括首次全电子响应,校准和波形重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstruction of atmospheric neutrino events at JUNO
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multipurpose liquid-scintillator detector whose main goal is the determination of the neutrino mass ordering using the measurement of the vacuum dominated oscillation pattern of reactor anti-neutrinos from eight reactor cores. The sensitivity of JUNO to the neutrino mass ordering can be enhanced via a combined analysis of reactor anti-neutrinos with atmospheric neutrinos, in which the matter-dominated oscillation depends on the mass ordering. Such an analysis requires a precise reconstruction of the energy and the direction of atmospheric neutrinos. As the largest liquid-scintillator detector ever built, JUNO will also be able to measure the atmospheric neutrino flux down to lower energies than the current large Cherenkov detectors. This poster presents the reconstruction of the energy of atmospheric neutrinos with a machine learning approach and the direction reconstruction with a novel approach. While the machine learning approach relies on the geometrical representation of the detector with a Graph Convolutional Neural Network, the latter focuses on the reconstruction of the photon emission topology in the JUNO detector. The results presented are based on Monte-Carlo simulations, including for the first time the full electronics response, calibration and waveform reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Jet fragmentation and QCD measurements at LHCb The ultimate CMS ECAL calibration and performance for the legacy reprocessing of LHC Run 2 data Sensitivity study for proton decay via $p→e^+ π^0 π^0$ and $p→μ^+ π^0 π^0$ in the Super-Kamiokande Detector The Laser-hybrid Accelerator for Radiobiological Applocations (LhARA) Status of the search for ${}^{48}$ Ca double beta decay with CANDLES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1