面向Twitter情感分析的词图全球中心性度量

George Vilarinho, E. Ruiz
{"title":"面向Twitter情感分析的词图全球中心性度量","authors":"George Vilarinho, E. Ruiz","doi":"10.1109/BRACIS.2018.00018","DOIUrl":null,"url":null,"abstract":"This paper presents a word graph based method for Twitter sentiment analysis (TSA) using global centrality metrics over graphs to evaluate sentiments, either positive or negative, expressed in microblogs. The proposed technique measures the importance of a sentence s for a given sentiment graph G by calculating its SentiElection coefficient. SentiElection, the method introduced in this work, is an ensemble of three global centrality measures: Katz index, Eigenvector centrality and PageRank. The results are compared to a previous model based on Containment similarity and Maximum Common Subgraph-based similarity metrics specifically designed to identify sentiments expressed in short texts. Using the geometric mean of their accuracies, we show the new suggested method outperforms the previous one.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global Centrality Measures in Word Graphs for Twitter Sentiment Analysis\",\"authors\":\"George Vilarinho, E. Ruiz\",\"doi\":\"10.1109/BRACIS.2018.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a word graph based method for Twitter sentiment analysis (TSA) using global centrality metrics over graphs to evaluate sentiments, either positive or negative, expressed in microblogs. The proposed technique measures the importance of a sentence s for a given sentiment graph G by calculating its SentiElection coefficient. SentiElection, the method introduced in this work, is an ensemble of three global centrality measures: Katz index, Eigenvector centrality and PageRank. The results are compared to a previous model based on Containment similarity and Maximum Common Subgraph-based similarity metrics specifically designed to identify sentiments expressed in short texts. Using the geometric mean of their accuracies, we show the new suggested method outperforms the previous one.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于词图的Twitter情感分析(TSA)方法,该方法使用图上的全局中心性度量来评估微博中表达的积极或消极情绪。该技术通过计算句子的SentiElection系数来衡量句子对给定情感图G的重要性。本文介绍的SentiElection方法是三种全局中心性度量的集合:Katz指数、特征向量中心性和PageRank。将结果与先前基于包含相似性和基于最大公共子图的相似性度量的模型进行比较,该模型专门用于识别短文本中表达的情感。利用其精度的几何平均值,我们证明了新方法优于之前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global Centrality Measures in Word Graphs for Twitter Sentiment Analysis
This paper presents a word graph based method for Twitter sentiment analysis (TSA) using global centrality metrics over graphs to evaluate sentiments, either positive or negative, expressed in microblogs. The proposed technique measures the importance of a sentence s for a given sentiment graph G by calculating its SentiElection coefficient. SentiElection, the method introduced in this work, is an ensemble of three global centrality measures: Katz index, Eigenvector centrality and PageRank. The results are compared to a previous model based on Containment similarity and Maximum Common Subgraph-based similarity metrics specifically designed to identify sentiments expressed in short texts. Using the geometric mean of their accuracies, we show the new suggested method outperforms the previous one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1