分类器在三相感应电动机短路初期故障检测中的性能比较

D. N. Coelho, G. Barreto, Cláudio M. S. Medeiros, J. Santos
{"title":"分类器在三相感应电动机短路初期故障检测中的性能比较","authors":"D. N. Coelho, G. Barreto, Cláudio M. S. Medeiros, J. Santos","doi":"10.1109/CIES.2014.7011829","DOIUrl":null,"url":null,"abstract":"This paper aims at the detection of short-circuit incipient fault condition in a three-phase squirrel-cage induction motor fed by a sinusoidal PWM converter. In order to detect this fault, different operation conditions are applied to an induction motor, and each sample of the real data set is taken from the line currents of the PWM converter aforementioned. For feature extraction, the Motor Current Signature Analysis (MCSA) is used. The detection of this fault is treated as a classification problem, therefore different supervised algorithms of machine learning are used so as to solve it: Multi-layer Perceptron (MLP), Extreme Learning Machine (ELM), Support-Vector Machine (SVM), Least-Squares Support-Vector Machine (LSSVM), and the Minimal Learning Machine (MLM). These classifiers are tested and the results are compared with other works with the same data set. In near future, an embedded system can be equipped with these algorithms.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Performance comparison of classifiers in the detection of short circuit incipient fault in a three-phase induction motor\",\"authors\":\"D. N. Coelho, G. Barreto, Cláudio M. S. Medeiros, J. Santos\",\"doi\":\"10.1109/CIES.2014.7011829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at the detection of short-circuit incipient fault condition in a three-phase squirrel-cage induction motor fed by a sinusoidal PWM converter. In order to detect this fault, different operation conditions are applied to an induction motor, and each sample of the real data set is taken from the line currents of the PWM converter aforementioned. For feature extraction, the Motor Current Signature Analysis (MCSA) is used. The detection of this fault is treated as a classification problem, therefore different supervised algorithms of machine learning are used so as to solve it: Multi-layer Perceptron (MLP), Extreme Learning Machine (ELM), Support-Vector Machine (SVM), Least-Squares Support-Vector Machine (LSSVM), and the Minimal Learning Machine (MLM). These classifiers are tested and the results are compared with other works with the same data set. In near future, an embedded system can be equipped with these algorithms.\",\"PeriodicalId\":287779,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIES.2014.7011829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文研究了用正弦PWM变换器供电的三相鼠笼式异步电动机短路初期故障状态的检测。为了检测该故障,对异步电动机施加不同的运行条件,并从上述PWM变换器的线路电流中提取真实数据集的每个样本。对于特征提取,使用电机电流特征分析(MCSA)。该故障的检测被视为一个分类问题,因此使用不同的机器学习监督算法来解决该问题:多层感知机(MLP)、极限学习机(ELM)、支持向量机(SVM)、最小二乘支持向量机(LSSVM)和最小学习机(MLM)。对这些分类器进行了测试,并将结果与具有相同数据集的其他作品进行了比较。在不久的将来,嵌入式系统可以配备这些算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance comparison of classifiers in the detection of short circuit incipient fault in a three-phase induction motor
This paper aims at the detection of short-circuit incipient fault condition in a three-phase squirrel-cage induction motor fed by a sinusoidal PWM converter. In order to detect this fault, different operation conditions are applied to an induction motor, and each sample of the real data set is taken from the line currents of the PWM converter aforementioned. For feature extraction, the Motor Current Signature Analysis (MCSA) is used. The detection of this fault is treated as a classification problem, therefore different supervised algorithms of machine learning are used so as to solve it: Multi-layer Perceptron (MLP), Extreme Learning Machine (ELM), Support-Vector Machine (SVM), Least-Squares Support-Vector Machine (LSSVM), and the Minimal Learning Machine (MLM). These classifiers are tested and the results are compared with other works with the same data set. In near future, an embedded system can be equipped with these algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A graph-based signal processing approach for low-rate energy disaggregation GA optimized time delayed feedback control of chaos in a memristor based chaotic circuit Visualizing uncertainty with fuzzy rose diagrams Jump detection using fuzzy logic A Multi-Population Genetic Algorithm to solve multi-objective remote switches allocation problem in distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1