燃油喷嘴喷雾模式分类器

M. Ghafoor, U. I. Bajwa, I. A. Taj
{"title":"燃油喷嘴喷雾模式分类器","authors":"M. Ghafoor, U. I. Bajwa, I. A. Taj","doi":"10.1109/FIT.2011.63","DOIUrl":null,"url":null,"abstract":"In this study an industrial problem of classification of faulty fuel nozzles is considered and a solution is proposed by analyzing their spray pattern through vision based algorithms. The proposed solution is more reliable, accurate, cheap, and descriptive as compared to the manual techniques which are time consuming and error prone. We capture the dependency of spray patterns on imaging parameters using direction dependent enhancement, adaptive filtering and statistical feature extraction. In this study directional features of spray patterns affected by various disorders are extracted and are then used for classification of different fuel nozzles using Euclidean distance classifier. Moreover nozzle spray patterns are processed for spray angle measurement.","PeriodicalId":101923,"journal":{"name":"2011 Frontiers of Information Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuel Nozzle Spray Pattern Classifier\",\"authors\":\"M. Ghafoor, U. I. Bajwa, I. A. Taj\",\"doi\":\"10.1109/FIT.2011.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study an industrial problem of classification of faulty fuel nozzles is considered and a solution is proposed by analyzing their spray pattern through vision based algorithms. The proposed solution is more reliable, accurate, cheap, and descriptive as compared to the manual techniques which are time consuming and error prone. We capture the dependency of spray patterns on imaging parameters using direction dependent enhancement, adaptive filtering and statistical feature extraction. In this study directional features of spray patterns affected by various disorders are extracted and are then used for classification of different fuel nozzles using Euclidean distance classifier. Moreover nozzle spray patterns are processed for spray angle measurement.\",\"PeriodicalId\":101923,\"journal\":{\"name\":\"2011 Frontiers of Information Technology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT.2011.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2011.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了燃油喷嘴故障分类的工业问题,并提出了一种基于视觉的燃油喷嘴故障分类算法。与耗时且容易出错的手工技术相比,所提出的解决方案更可靠、更准确、更便宜、更具描述性。我们使用方向相关增强、自适应滤波和统计特征提取来捕获喷雾模式对成像参数的依赖性。在本研究中,提取了受各种障碍影响的喷雾模式的方向性特征,然后利用欧氏距离分类器对不同的燃油喷嘴进行分类。此外,还对喷嘴的喷雾形状进行了处理,以测量喷雾角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuel Nozzle Spray Pattern Classifier
In this study an industrial problem of classification of faulty fuel nozzles is considered and a solution is proposed by analyzing their spray pattern through vision based algorithms. The proposed solution is more reliable, accurate, cheap, and descriptive as compared to the manual techniques which are time consuming and error prone. We capture the dependency of spray patterns on imaging parameters using direction dependent enhancement, adaptive filtering and statistical feature extraction. In this study directional features of spray patterns affected by various disorders are extracted and are then used for classification of different fuel nozzles using Euclidean distance classifier. Moreover nozzle spray patterns are processed for spray angle measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Non-functional Requirements in Service Oriented Development Secure Solution to Data Transfer from Sensor Node to Sink against Aggregator Compromises Development of an Optical Sensor for the Detection of Volatile Organic Compounds Network Performance Optimization: A Case Study of Enterprise Network Simulated in OPNET Fully Distributed Cooperative Spectrum Sensing for Cognitive Radio Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1