函数发现框架下启发式IR约束的研究

Parantapa Goswami, Massih-Reza Amini, Éric Gaussier
{"title":"函数发现框架下启发式IR约束的研究","authors":"Parantapa Goswami, Massih-Reza Amini, Éric Gaussier","doi":"10.1145/2808194.2809479","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the effect of the heuristic IR constraints on IR term-document scoring functions within the recently proposed function discovery framework. In the earlier study the constraints were empirically validated as a whole. Moreover, only the group of form constraints was utilized and the other prominent group, the adjustment constraints, was not considered. In this work we will investigate all the constraints individually and study them with two different term frequency normalization, namely normalization scheme used in DFR models and relative term count normalization used in language models.","PeriodicalId":440325,"journal":{"name":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of Heuristic IR Constraints Under Function Discovery Framework\",\"authors\":\"Parantapa Goswami, Massih-Reza Amini, Éric Gaussier\",\"doi\":\"10.1145/2808194.2809479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the effect of the heuristic IR constraints on IR term-document scoring functions within the recently proposed function discovery framework. In the earlier study the constraints were empirically validated as a whole. Moreover, only the group of form constraints was utilized and the other prominent group, the adjustment constraints, was not considered. In this work we will investigate all the constraints individually and study them with two different term frequency normalization, namely normalization scheme used in DFR models and relative term count normalization used in language models.\",\"PeriodicalId\":440325,\"journal\":{\"name\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808194.2809479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808194.2809479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在最近提出的功能发现框架中,我们研究了启发式IR约束对IR术语-文档评分函数的影响。在早期的研究中,约束作为一个整体得到了经验验证。此外,仅利用了形式约束组,而未考虑另一突出组,即调整约束。在这项工作中,我们将单独研究所有约束,并使用两种不同的术语频率归一化来研究它们,即DFR模型中使用的归一化方案和语言模型中使用的相对术语计数归一化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Heuristic IR Constraints Under Function Discovery Framework
In this paper we investigate the effect of the heuristic IR constraints on IR term-document scoring functions within the recently proposed function discovery framework. In the earlier study the constraints were empirically validated as a whole. Moreover, only the group of form constraints was utilized and the other prominent group, the adjustment constraints, was not considered. In this work we will investigate all the constraints individually and study them with two different term frequency normalization, namely normalization scheme used in DFR models and relative term count normalization used in language models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entity Linking in Queries: Tasks and Evaluation Using Part-of-Speech N-grams for Sensitive-Text Classification Query Expansion with Freebase Partially Labeled Supervised Topic Models for RetrievingSimilar Questions in CQA Forums Two Operators to Define and Manipulate Themes of a Document Collection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1