{"title":"多个预订和俄克拉何马州更新","authors":"J. Stone, H. Stone, P. Heidelberger, John Turek","doi":"10.1109/88.260295","DOIUrl":null,"url":null,"abstract":"A multiple reservation approach that allows atomic updates of multiple shared variables and simplifies concurrent and nonblocking codes for managing shared data structures such as queues and linked lists is presented. The method can be implemented as an extension to any cache protocol that grants write access to at most one processor at a time. Performance improvement, automatic restart, and livelock avoidance are discussed. Some sample programs are examined.<<ETX>>","PeriodicalId":325213,"journal":{"name":"IEEE Parallel & Distributed Technology: Systems & Applications","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"Multiple reservations and the Oklahoma update\",\"authors\":\"J. Stone, H. Stone, P. Heidelberger, John Turek\",\"doi\":\"10.1109/88.260295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiple reservation approach that allows atomic updates of multiple shared variables and simplifies concurrent and nonblocking codes for managing shared data structures such as queues and linked lists is presented. The method can be implemented as an extension to any cache protocol that grants write access to at most one processor at a time. Performance improvement, automatic restart, and livelock avoidance are discussed. Some sample programs are examined.<<ETX>>\",\"PeriodicalId\":325213,\"journal\":{\"name\":\"IEEE Parallel & Distributed Technology: Systems & Applications\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Parallel & Distributed Technology: Systems & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/88.260295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Parallel & Distributed Technology: Systems & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/88.260295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multiple reservation approach that allows atomic updates of multiple shared variables and simplifies concurrent and nonblocking codes for managing shared data structures such as queues and linked lists is presented. The method can be implemented as an extension to any cache protocol that grants write access to at most one processor at a time. Performance improvement, automatic restart, and livelock avoidance are discussed. Some sample programs are examined.<>