{"title":"基于指令的Xeon Phi协处理器有限差分法自动调优","authors":"T. Katagiri, S. Ohshima, M. Matsumoto","doi":"10.1109/IPDPSW.2015.11","DOIUrl":null,"url":null,"abstract":"In this paper, we present a directive-based auto-tuning (AT) framework, called ppOpen-AT, and demonstrate its effect using simulation code based on the Finite Difference Method (FDM). The framework utilizes well-known loop transformation techniques. However, the codes used are carefully designed to minimize the software stack in order to meet the requirements of a many-core architecture currently in operation. The results of evaluations conducted using ppOpen-AT indicate that maximum speedup factors greater than 550% are obtained when it is applied in eight nodes of the Intel Xeon Phi. Further, in the AT for data packing and unpacking, a 49% speedup factor for the whole application is achieved. By using it with strong scaling on 32 nodes in a cluster of the Xeon Phi, we also obtain 24% speedups for the overall execution.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Directive-Based Auto-Tuning for the Finite Difference Method on the Xeon Phi\",\"authors\":\"T. Katagiri, S. Ohshima, M. Matsumoto\",\"doi\":\"10.1109/IPDPSW.2015.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a directive-based auto-tuning (AT) framework, called ppOpen-AT, and demonstrate its effect using simulation code based on the Finite Difference Method (FDM). The framework utilizes well-known loop transformation techniques. However, the codes used are carefully designed to minimize the software stack in order to meet the requirements of a many-core architecture currently in operation. The results of evaluations conducted using ppOpen-AT indicate that maximum speedup factors greater than 550% are obtained when it is applied in eight nodes of the Intel Xeon Phi. Further, in the AT for data packing and unpacking, a 49% speedup factor for the whole application is achieved. By using it with strong scaling on 32 nodes in a cluster of the Xeon Phi, we also obtain 24% speedups for the overall execution.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"315 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Directive-Based Auto-Tuning for the Finite Difference Method on the Xeon Phi
In this paper, we present a directive-based auto-tuning (AT) framework, called ppOpen-AT, and demonstrate its effect using simulation code based on the Finite Difference Method (FDM). The framework utilizes well-known loop transformation techniques. However, the codes used are carefully designed to minimize the software stack in order to meet the requirements of a many-core architecture currently in operation. The results of evaluations conducted using ppOpen-AT indicate that maximum speedup factors greater than 550% are obtained when it is applied in eight nodes of the Intel Xeon Phi. Further, in the AT for data packing and unpacking, a 49% speedup factor for the whole application is achieved. By using it with strong scaling on 32 nodes in a cluster of the Xeon Phi, we also obtain 24% speedups for the overall execution.