{"title":"加权独立截线和强着色算法","authors":"Alessandra Graf, David G. Harris, P. Haxell","doi":"10.1145/3474057","DOIUrl":null,"url":null,"abstract":"An independent transversal (IT) in a graph with a given vertex partition is an independent set consisting of one vertex in each partition class. Several sufficient conditions are known for the existence of an IT in a given graph and vertex partition, which have been used over the years to solve many combinatorial problems. Some of these IT existence theorems have algorithmic proofs, but there remains a gap between the best existential bounds and the bounds obtainable by efficient algorithms. Recently, Graf and Haxell (2018) described a new (deterministic) algorithm that asymptotically closes this gap, but there are limitations on its applicability. In this article, we develop a randomized algorithm that is much more widely applicable, and demonstrate its use by giving efficient algorithms for two problems concerning the strong chromatic number of graphs.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Algorithms for Weighted Independent Transversals and Strong Colouring\",\"authors\":\"Alessandra Graf, David G. Harris, P. Haxell\",\"doi\":\"10.1145/3474057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An independent transversal (IT) in a graph with a given vertex partition is an independent set consisting of one vertex in each partition class. Several sufficient conditions are known for the existence of an IT in a given graph and vertex partition, which have been used over the years to solve many combinatorial problems. Some of these IT existence theorems have algorithmic proofs, but there remains a gap between the best existential bounds and the bounds obtainable by efficient algorithms. Recently, Graf and Haxell (2018) described a new (deterministic) algorithm that asymptotically closes this gap, but there are limitations on its applicability. In this article, we develop a randomized algorithm that is much more widely applicable, and demonstrate its use by giving efficient algorithms for two problems concerning the strong chromatic number of graphs.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algorithms for Weighted Independent Transversals and Strong Colouring
An independent transversal (IT) in a graph with a given vertex partition is an independent set consisting of one vertex in each partition class. Several sufficient conditions are known for the existence of an IT in a given graph and vertex partition, which have been used over the years to solve many combinatorial problems. Some of these IT existence theorems have algorithmic proofs, but there remains a gap between the best existential bounds and the bounds obtainable by efficient algorithms. Recently, Graf and Haxell (2018) described a new (deterministic) algorithm that asymptotically closes this gap, but there are limitations on its applicability. In this article, we develop a randomized algorithm that is much more widely applicable, and demonstrate its use by giving efficient algorithms for two problems concerning the strong chromatic number of graphs.