{"title":"Analisis Opini Publik Terhadap Undang-Undang KUHP Tahun 2022 Menggunakan Algoritma Naïve Bayes Classifier","authors":"Febby Apri Wenando","doi":"10.37859/jf.v13i02.5670","DOIUrl":null,"url":null,"abstract":"Analisis sentimen, juga disebut penambangan opini, melibatkan proses otomatis dalam memahami, mengekstraksi, dan memproses data tekstual untuk mendapatkan informasi sentimen yang diungkapkan dalam opini seseorang tentang suatu subjek atau objek, biasanya mengambil sikap negatif atau positif. Penelitian ini berupaya untuk mengkategorikan data tweet menjadi sentimen positif dan negatif. Dengan menggunakan teks berbahasa Indonesia dari platform media sosial Twitter, penelitian ini memanfaatkan opini masyarakat dalam tweet tersebut untuk analisis sentimen masyarakat untuk mengetahui persepsi masyarakat terkait Rancangan Undang-Undang KUHP yang baru saja disahkan. Kumpulan data yang digunakan diambil dari social media Twitter, sebanyak 142 data tweet yang gunakan pada penelitian ini. Klasifikasi data tweet ini menggunakan algoritma Naïve Bayes Classifier. Sebelum dilakukan analisis dilakukan tahapan awal untuk mempersiapkan data, disebut dengan tahapan pre-processing, tahapan ini dilakukan untuk membersihkan teks, meliputi proses seperti case folding, tokenisasi, normalisasi, dan stopword removal. Hasil dari 142 data uji yang klasifikasi menghasilkan 62 data bersentimen positif dan sebanyak 80 data sentimen negatif. Setelah dilakukan evaluasi didapat hasil performa algoritma Naïve Bayes Classifier dengan nilai akurasi sebesar 87%.","PeriodicalId":145740,"journal":{"name":"JURNAL FASILKOM","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL FASILKOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37859/jf.v13i02.5670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis Opini Publik Terhadap Undang-Undang KUHP Tahun 2022 Menggunakan Algoritma Naïve Bayes Classifier
Analisis sentimen, juga disebut penambangan opini, melibatkan proses otomatis dalam memahami, mengekstraksi, dan memproses data tekstual untuk mendapatkan informasi sentimen yang diungkapkan dalam opini seseorang tentang suatu subjek atau objek, biasanya mengambil sikap negatif atau positif. Penelitian ini berupaya untuk mengkategorikan data tweet menjadi sentimen positif dan negatif. Dengan menggunakan teks berbahasa Indonesia dari platform media sosial Twitter, penelitian ini memanfaatkan opini masyarakat dalam tweet tersebut untuk analisis sentimen masyarakat untuk mengetahui persepsi masyarakat terkait Rancangan Undang-Undang KUHP yang baru saja disahkan. Kumpulan data yang digunakan diambil dari social media Twitter, sebanyak 142 data tweet yang gunakan pada penelitian ini. Klasifikasi data tweet ini menggunakan algoritma Naïve Bayes Classifier. Sebelum dilakukan analisis dilakukan tahapan awal untuk mempersiapkan data, disebut dengan tahapan pre-processing, tahapan ini dilakukan untuk membersihkan teks, meliputi proses seperti case folding, tokenisasi, normalisasi, dan stopword removal. Hasil dari 142 data uji yang klasifikasi menghasilkan 62 data bersentimen positif dan sebanyak 80 data sentimen negatif. Setelah dilakukan evaluasi didapat hasil performa algoritma Naïve Bayes Classifier dengan nilai akurasi sebesar 87%.