{"title":"$\\ell_{1}$惩罚凸问题的无区域安全筛选测试","authors":"C. Herzet, Clément Elvira, H. Dang","doi":"10.23919/eusipco55093.2022.9909532","DOIUrl":null,"url":null,"abstract":"We address the problem of safe screening for $\\ell_{1}$-penalized convex regression/classification problems, i.e., the identification of zero coordinates of the solutions. Unlike previous contributions of the literature, we propose a screening methodology which does not require the knowledge of a so-called “safe region”. Our approach does not rely on any other assumption than convexity (in particular, no strong-convexity hypothesis is needed) and therefore applies to a wide family of convex problems. When the Fenchel conjugate of the data-fidelity term is strongly convex, we show that the popular “GAP sphere test” proposed by Fercoq et al. can be recovered as a particular case of our methodology (up to a minor modification). We illustrate numerically the performance of our procedure on the “sparse support vector machine classification” problem.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Region-free Safe Screening Tests for $\\\\ell_{1}$-penalized Convex Problems\",\"authors\":\"C. Herzet, Clément Elvira, H. Dang\",\"doi\":\"10.23919/eusipco55093.2022.9909532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of safe screening for $\\\\ell_{1}$-penalized convex regression/classification problems, i.e., the identification of zero coordinates of the solutions. Unlike previous contributions of the literature, we propose a screening methodology which does not require the knowledge of a so-called “safe region”. Our approach does not rely on any other assumption than convexity (in particular, no strong-convexity hypothesis is needed) and therefore applies to a wide family of convex problems. When the Fenchel conjugate of the data-fidelity term is strongly convex, we show that the popular “GAP sphere test” proposed by Fercoq et al. can be recovered as a particular case of our methodology (up to a minor modification). We illustrate numerically the performance of our procedure on the “sparse support vector machine classification” problem.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Region-free Safe Screening Tests for $\ell_{1}$-penalized Convex Problems
We address the problem of safe screening for $\ell_{1}$-penalized convex regression/classification problems, i.e., the identification of zero coordinates of the solutions. Unlike previous contributions of the literature, we propose a screening methodology which does not require the knowledge of a so-called “safe region”. Our approach does not rely on any other assumption than convexity (in particular, no strong-convexity hypothesis is needed) and therefore applies to a wide family of convex problems. When the Fenchel conjugate of the data-fidelity term is strongly convex, we show that the popular “GAP sphere test” proposed by Fercoq et al. can be recovered as a particular case of our methodology (up to a minor modification). We illustrate numerically the performance of our procedure on the “sparse support vector machine classification” problem.