克服不规则稀疏矩阵的负载不平衡

Goran Flegar, H. Anzt
{"title":"克服不规则稀疏矩阵的负载不平衡","authors":"Goran Flegar, H. Anzt","doi":"10.1145/3149704.3149767","DOIUrl":null,"url":null,"abstract":"In this paper we propose a load-balanced GPU kernel for computing the sparse matrix vector (SpMV) product. Making heavy use of the latest GPU programming features, we also enable satisfying performance for irregular and unbalanced matrices. In a performance comparison using 400 test matrices we reveal the new kernel being superior to the most popular SpMV implementations.","PeriodicalId":292798,"journal":{"name":"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Overcoming Load Imbalance for Irregular Sparse Matrices\",\"authors\":\"Goran Flegar, H. Anzt\",\"doi\":\"10.1145/3149704.3149767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a load-balanced GPU kernel for computing the sparse matrix vector (SpMV) product. Making heavy use of the latest GPU programming features, we also enable satisfying performance for irregular and unbalanced matrices. In a performance comparison using 400 test matrices we reveal the new kernel being superior to the most popular SpMV implementations.\",\"PeriodicalId\":292798,\"journal\":{\"name\":\"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3149704.3149767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149704.3149767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种计算稀疏矩阵向量积的负载均衡GPU内核。通过大量使用最新的GPU编程功能,我们还为不规则和不平衡矩阵提供了令人满意的性能。在使用400个测试矩阵的性能比较中,我们发现新内核优于最流行的SpMV实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overcoming Load Imbalance for Irregular Sparse Matrices
In this paper we propose a load-balanced GPU kernel for computing the sparse matrix vector (SpMV) product. Making heavy use of the latest GPU programming features, we also enable satisfying performance for irregular and unbalanced matrices. In a performance comparison using 400 test matrices we reveal the new kernel being superior to the most popular SpMV implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Work-Efficiency for High Performance Vertex-Centric Graph Analytics on GPUs Parallel Depth-First Search for Directed Acyclic Graphs Quantum Computing and Irregular Applications An Efficient Data Layout Transformation Algorithm for Locality-Aware Parallel Sparse FFT A Case for Migrating Execution for Irregular Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1