T. Minamino, Yusuke V. Morimoto, A. Kawamoto, H. Terashima, K. Imada
{"title":"沙门氏菌鞭毛","authors":"T. Minamino, Yusuke V. Morimoto, A. Kawamoto, H. Terashima, K. Imada","doi":"10.5772/intechopen.73277","DOIUrl":null,"url":null,"abstract":"Flagella-driven motility contributes to effective bacterial invasion. The bacterial flagellum of Salmonella enterica is a rotary motor powered by an electrochemical potential difference of protons across the cytoplasmic membrane. The flagellum is composed of several basal body rings and an axial structure consisting of the rod as a drive shaft, the hook as a universal joint and the filament as a helical propeller. The assembly of the axial structure begins with the rod, followed by the hook and finally the filament. A type III protein export apparatus is located at the flagellar base and transports flagellar axial proteins from the cytoplasm to the distal end of the growing flagellar structure where their assembly occurs. The protein export apparatus coordinates flagellar gene expression with assembly, allowing the hierarchy of flagellar gene expression to exactly parallel the flagellar assembly process. The basal body can accommodate a dozen stator complexes around a rotor ring complex in a load-dependent manner. Each stator unit conducts protons and pushes the rotor. In this book chapter, we will summarize our current understanding of the structure and function of the Salmonella flagellum.","PeriodicalId":326103,"journal":{"name":"Salmonella - A Re-emerging Pathogen","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Salmonella Flagellum\",\"authors\":\"T. Minamino, Yusuke V. Morimoto, A. Kawamoto, H. Terashima, K. Imada\",\"doi\":\"10.5772/intechopen.73277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flagella-driven motility contributes to effective bacterial invasion. The bacterial flagellum of Salmonella enterica is a rotary motor powered by an electrochemical potential difference of protons across the cytoplasmic membrane. The flagellum is composed of several basal body rings and an axial structure consisting of the rod as a drive shaft, the hook as a universal joint and the filament as a helical propeller. The assembly of the axial structure begins with the rod, followed by the hook and finally the filament. A type III protein export apparatus is located at the flagellar base and transports flagellar axial proteins from the cytoplasm to the distal end of the growing flagellar structure where their assembly occurs. The protein export apparatus coordinates flagellar gene expression with assembly, allowing the hierarchy of flagellar gene expression to exactly parallel the flagellar assembly process. The basal body can accommodate a dozen stator complexes around a rotor ring complex in a load-dependent manner. Each stator unit conducts protons and pushes the rotor. In this book chapter, we will summarize our current understanding of the structure and function of the Salmonella flagellum.\",\"PeriodicalId\":326103,\"journal\":{\"name\":\"Salmonella - A Re-emerging Pathogen\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Salmonella - A Re-emerging Pathogen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.73277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Salmonella - A Re-emerging Pathogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.73277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flagella-driven motility contributes to effective bacterial invasion. The bacterial flagellum of Salmonella enterica is a rotary motor powered by an electrochemical potential difference of protons across the cytoplasmic membrane. The flagellum is composed of several basal body rings and an axial structure consisting of the rod as a drive shaft, the hook as a universal joint and the filament as a helical propeller. The assembly of the axial structure begins with the rod, followed by the hook and finally the filament. A type III protein export apparatus is located at the flagellar base and transports flagellar axial proteins from the cytoplasm to the distal end of the growing flagellar structure where their assembly occurs. The protein export apparatus coordinates flagellar gene expression with assembly, allowing the hierarchy of flagellar gene expression to exactly parallel the flagellar assembly process. The basal body can accommodate a dozen stator complexes around a rotor ring complex in a load-dependent manner. Each stator unit conducts protons and pushes the rotor. In this book chapter, we will summarize our current understanding of the structure and function of the Salmonella flagellum.