用于确定严重烧伤患者体表总面积的即时三维体图绘制

Julia Loegering, Kevin Krause, Jesse Ahlquist, Kevin Webb, Karen Xu, N. Tran, D. Greenhalgh, T. Palmieri
{"title":"用于确定严重烧伤患者体表总面积的即时三维体图绘制","authors":"Julia Loegering, Kevin Krause, Jesse Ahlquist, Kevin Webb, Karen Xu, N. Tran, D. Greenhalgh, T. Palmieri","doi":"10.1109/HI-POCT45284.2019.8962792","DOIUrl":null,"url":null,"abstract":"Total body surface area (TBSA) is a critical biometric for accurate body fluid restoration and drug dosing in medical treatments. However, current clinical equation calculations of TBSA are highly inaccurate, resulting in error up to 25%. Within burn care, this error leads to misinformed fluid resuscitation that result in increased medical complications. Our team sought to combine recently developed mathematical equations that are clinically unutilized with 3D scanning methods to better the accuracy of TBSA calculations in treatment. To bridge the gap between modern TBSA equations and the clinic, we developed an algorithm that indexes an equation best suited to a patient according to inputs such as age, height and weight. For patients that cannot be matched to an appropriate equation, our team developed a time-of-flight scanning protocol to capture 3D models of the human body. From these models, TBSA can be extrapolated finite analysis deconstruction and image processing tools. Our scanning device reduced error of TBSA to an average of 4% across all scanned subjects and it proved to be one of the first 3D scanning devices compatible to the clinic workflow.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-of-care 3D body-mapping for determining total body surface area of severely burned patients\",\"authors\":\"Julia Loegering, Kevin Krause, Jesse Ahlquist, Kevin Webb, Karen Xu, N. Tran, D. Greenhalgh, T. Palmieri\",\"doi\":\"10.1109/HI-POCT45284.2019.8962792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Total body surface area (TBSA) is a critical biometric for accurate body fluid restoration and drug dosing in medical treatments. However, current clinical equation calculations of TBSA are highly inaccurate, resulting in error up to 25%. Within burn care, this error leads to misinformed fluid resuscitation that result in increased medical complications. Our team sought to combine recently developed mathematical equations that are clinically unutilized with 3D scanning methods to better the accuracy of TBSA calculations in treatment. To bridge the gap between modern TBSA equations and the clinic, we developed an algorithm that indexes an equation best suited to a patient according to inputs such as age, height and weight. For patients that cannot be matched to an appropriate equation, our team developed a time-of-flight scanning protocol to capture 3D models of the human body. From these models, TBSA can be extrapolated finite analysis deconstruction and image processing tools. Our scanning device reduced error of TBSA to an average of 4% across all scanned subjects and it proved to be one of the first 3D scanning devices compatible to the clinic workflow.\",\"PeriodicalId\":269346,\"journal\":{\"name\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HI-POCT45284.2019.8962792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

总体表面积(TBSA)是医学治疗中精确体液恢复和药物剂量的重要生物计量指标。然而,目前临床计算TBSA的公式非常不准确,导致误差高达25%。在烧伤护理中,这种错误会导致错误的液体复苏,从而增加医疗并发症。我们的团队试图将最近开发的临床未使用的数学方程与3D扫描方法相结合,以提高治疗中TBSA计算的准确性。为了弥合现代TBSA方程与临床之间的差距,我们开发了一种算法,该算法根据年龄、身高和体重等输入对最适合患者的方程进行索引。对于无法匹配适当方程的患者,我们的团队开发了一种飞行时间扫描协议来捕获人体的3D模型。从这些模型中,TBSA可以推断出有限分析解构和图像处理的工具。我们的扫描设备将所有扫描对象的TBSA误差平均降低到4%,并被证明是首批与临床工作流程兼容的3D扫描设备之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Point-of-care 3D body-mapping for determining total body surface area of severely burned patients
Total body surface area (TBSA) is a critical biometric for accurate body fluid restoration and drug dosing in medical treatments. However, current clinical equation calculations of TBSA are highly inaccurate, resulting in error up to 25%. Within burn care, this error leads to misinformed fluid resuscitation that result in increased medical complications. Our team sought to combine recently developed mathematical equations that are clinically unutilized with 3D scanning methods to better the accuracy of TBSA calculations in treatment. To bridge the gap between modern TBSA equations and the clinic, we developed an algorithm that indexes an equation best suited to a patient according to inputs such as age, height and weight. For patients that cannot be matched to an appropriate equation, our team developed a time-of-flight scanning protocol to capture 3D models of the human body. From these models, TBSA can be extrapolated finite analysis deconstruction and image processing tools. Our scanning device reduced error of TBSA to an average of 4% across all scanned subjects and it proved to be one of the first 3D scanning devices compatible to the clinic workflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Nanoscale Electrode for Biosensing A Motion Free Image Based TRF Reader for Quantitative Immunoassay Gaze-based video games for assessment of attention outside of the lab Conjugated Barcoded Particles for Multiplexed Biomarker Quantification with a Microfluidic Biochip Daily Locomotor Movement Recognition with a Smart Insole and a Pre-defined Route Map: Towards Early Motor Dysfunction Detection*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1