基于PSO-BP神经网络的移相全桥倍流同步整流变换器PID控制策略

Hemiao Liu, Yulian Zhao, Mahmoud Al Shurafa, Jiufei Chen, Jing Wu, Yanming Cheng
{"title":"基于PSO-BP神经网络的移相全桥倍流同步整流变换器PID控制策略","authors":"Hemiao Liu, Yulian Zhao, Mahmoud Al Shurafa, Jiufei Chen, Jing Wu, Yanming Cheng","doi":"10.1109/IMCEC51613.2021.9482183","DOIUrl":null,"url":null,"abstract":"In this paper, a phase-shifted full-bridge rectifier (PSFB) based on MOSFET and its control strategies are studied. Aiming at its high loss, low efficiency and large ripple coefficient, a phase-shifted full-bridge based on IGBT is proposed to replace MOSFET phase-shifted full bridge to further reduce the on-state power loss. The current-doubler synchronization technology is applied to the rectifying converter to reduce the ripple factor further. In the control strategy, various double closed-loop PI control effects achieved by BP neural network and Particle Swarm optimization BP neural network (PSO-BP) are compared and analysed through modelling and conducting simulation. The simulation results demonstrate that PSO-BP neural network control strategy has the advantages of the fastest response speed, the smallest overshoot and the shortest steady-state time. Comprehensive test results indicate that the proposed IGBT phase-shift full bridge current-doubler synchronous rectifying converter based on PSO-BP neural network control has a good performance of excellent waveform, a fast dynamic response, a wide range of output voltage.","PeriodicalId":240400,"journal":{"name":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel PID Control Strategy Based on PSO-BP Neural Network for Phase-Shifted Full-Bridge Current-Doubler Synchronous Rectifying Converter\",\"authors\":\"Hemiao Liu, Yulian Zhao, Mahmoud Al Shurafa, Jiufei Chen, Jing Wu, Yanming Cheng\",\"doi\":\"10.1109/IMCEC51613.2021.9482183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a phase-shifted full-bridge rectifier (PSFB) based on MOSFET and its control strategies are studied. Aiming at its high loss, low efficiency and large ripple coefficient, a phase-shifted full-bridge based on IGBT is proposed to replace MOSFET phase-shifted full bridge to further reduce the on-state power loss. The current-doubler synchronization technology is applied to the rectifying converter to reduce the ripple factor further. In the control strategy, various double closed-loop PI control effects achieved by BP neural network and Particle Swarm optimization BP neural network (PSO-BP) are compared and analysed through modelling and conducting simulation. The simulation results demonstrate that PSO-BP neural network control strategy has the advantages of the fastest response speed, the smallest overshoot and the shortest steady-state time. Comprehensive test results indicate that the proposed IGBT phase-shift full bridge current-doubler synchronous rectifying converter based on PSO-BP neural network control has a good performance of excellent waveform, a fast dynamic response, a wide range of output voltage.\",\"PeriodicalId\":240400,\"journal\":{\"name\":\"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC51613.2021.9482183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC51613.2021.9482183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一种基于MOSFET的移相全桥整流器及其控制策略。针对IGBT的高损耗、低效率和大纹波系数的缺点,提出了一种基于IGBT的移相全桥来取代MOSFET的移相全桥,进一步降低导通功率损耗。将倍流同步技术应用于整流变换器,进一步降低了纹波因数。在控制策略上,通过建模和仿真,对比分析了BP神经网络和粒子群优化BP神经网络(PSO-BP)实现的各种双闭环PI控制效果。仿真结果表明,PSO-BP神经网络控制策略具有响应速度快、超调量小、稳态时间短等优点。综合测试结果表明,基于PSO-BP神经网络控制的IGBT移相全桥倍流同步整流变换器具有波形优、动态响应快、输出电压范围宽等特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel PID Control Strategy Based on PSO-BP Neural Network for Phase-Shifted Full-Bridge Current-Doubler Synchronous Rectifying Converter
In this paper, a phase-shifted full-bridge rectifier (PSFB) based on MOSFET and its control strategies are studied. Aiming at its high loss, low efficiency and large ripple coefficient, a phase-shifted full-bridge based on IGBT is proposed to replace MOSFET phase-shifted full bridge to further reduce the on-state power loss. The current-doubler synchronization technology is applied to the rectifying converter to reduce the ripple factor further. In the control strategy, various double closed-loop PI control effects achieved by BP neural network and Particle Swarm optimization BP neural network (PSO-BP) are compared and analysed through modelling and conducting simulation. The simulation results demonstrate that PSO-BP neural network control strategy has the advantages of the fastest response speed, the smallest overshoot and the shortest steady-state time. Comprehensive test results indicate that the proposed IGBT phase-shift full bridge current-doubler synchronous rectifying converter based on PSO-BP neural network control has a good performance of excellent waveform, a fast dynamic response, a wide range of output voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The HT-TBD Algorithm for Large Maneuvering Targets with Fewer Beats and More Groups Key Technologies of Heterogeneous System General Data Service based on Virtual Table Research on Plant Disease Detection Technology Based on Wireless Sensor Network Leaf Segmentation Algorithm Based on Improved U-shaped Network under Complex Background Research on Anti-jamming Simulation based on Circular Array Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1