{"title":"基于多标签分类方法的新冠肺炎疫情期间货物服务投诉分析——基于调查和基于文字标注的比较","authors":"Tolga Kuyucuk, Levent Çallı","doi":"10.35377/saucis...1121830","DOIUrl":null,"url":null,"abstract":"This study investigates how cargo companies, with a significant market share in Turkey's service sector, managed their last-mile activities during the Covid-19 outbreak and suggests the solution to the adverse outcomes. The data used in the study included complaints made for cargo companies from an online complaint management website called sikayetvar.com from the start of the pandemic to the date of the research, which contained words related to the pandemic and was collected using Python language and the Scrapy module web scraping methods. Multilabel classification algorithms were used to categorize complaints based on assessments of training data obtained according to the topics. Results showed that parcel delivery-related themes were the most often complained about, and a considerable portion were delay issues.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Multi-Label Classification Methods to Analyze Complaints Against Cargo Services During the COVID-19 Outbreak: Comparing Survey-Based and Word-Based Labeling\",\"authors\":\"Tolga Kuyucuk, Levent Çallı\",\"doi\":\"10.35377/saucis...1121830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates how cargo companies, with a significant market share in Turkey's service sector, managed their last-mile activities during the Covid-19 outbreak and suggests the solution to the adverse outcomes. The data used in the study included complaints made for cargo companies from an online complaint management website called sikayetvar.com from the start of the pandemic to the date of the research, which contained words related to the pandemic and was collected using Python language and the Scrapy module web scraping methods. Multilabel classification algorithms were used to categorize complaints based on assessments of training data obtained according to the topics. Results showed that parcel delivery-related themes were the most often complained about, and a considerable portion were delay issues.\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/saucis...1121830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1121830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Multi-Label Classification Methods to Analyze Complaints Against Cargo Services During the COVID-19 Outbreak: Comparing Survey-Based and Word-Based Labeling
This study investigates how cargo companies, with a significant market share in Turkey's service sector, managed their last-mile activities during the Covid-19 outbreak and suggests the solution to the adverse outcomes. The data used in the study included complaints made for cargo companies from an online complaint management website called sikayetvar.com from the start of the pandemic to the date of the research, which contained words related to the pandemic and was collected using Python language and the Scrapy module web scraping methods. Multilabel classification algorithms were used to categorize complaints based on assessments of training data obtained according to the topics. Results showed that parcel delivery-related themes were the most often complained about, and a considerable portion were delay issues.