构形学习依赖于任务复杂度和时间结构

Nicholas Menghi, W. Penny
{"title":"构形学习依赖于任务复杂度和时间结构","authors":"Nicholas Menghi, W. Penny","doi":"10.32470/ccn.2019.1073-0","DOIUrl":null,"url":null,"abstract":"This paper describes a set of associative learning experiments in which the appropriate response depends on multiple relevant stimuli. We vary both the complexity of the stimulus-response mapping (task) and the temporal structure of the stimuli that are presented. We find that both of these manipulations affect the accuracy with which the task can be learnt, and that task complexity affects the proportion of subjects who correctly provide declarative knowledge of the underlying association. Computational modelling of subjects’ behaviour, based on Dynamic Logistic Regression models, allowed us to probe the strategies that subjects employed during learning. We found that the majority of subjects employed a configural learning strategy during the complex task and a mixed configural/rule-based strategy during the simpler task. Computational modelling also provided an entropybased index of strategy exploration with greater exploration observed during the complex task.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Configural Learning depends on Task Complexity and Temporal Structure\",\"authors\":\"Nicholas Menghi, W. Penny\",\"doi\":\"10.32470/ccn.2019.1073-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a set of associative learning experiments in which the appropriate response depends on multiple relevant stimuli. We vary both the complexity of the stimulus-response mapping (task) and the temporal structure of the stimuli that are presented. We find that both of these manipulations affect the accuracy with which the task can be learnt, and that task complexity affects the proportion of subjects who correctly provide declarative knowledge of the underlying association. Computational modelling of subjects’ behaviour, based on Dynamic Logistic Regression models, allowed us to probe the strategies that subjects employed during learning. We found that the majority of subjects employed a configural learning strategy during the complex task and a mixed configural/rule-based strategy during the simpler task. Computational modelling also provided an entropybased index of strategy exploration with greater exploration observed during the complex task.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1073-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1073-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一组联想学习实验,其中适当的反应取决于多个相关刺激。我们改变刺激-反应映射(任务)的复杂性和所呈现的刺激的时间结构。我们发现,这两种操作都会影响任务学习的准确性,任务复杂性会影响正确提供潜在关联陈述性知识的受试者比例。基于动态逻辑回归模型的受试者行为计算模型,使我们能够探索受试者在学习过程中使用的策略。我们发现,大多数被试在复杂任务中使用配置学习策略,在简单任务中使用混合配置/规则学习策略。计算模型还提供了一种基于熵的策略探索指标,在复杂任务中观察到更大的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Configural Learning depends on Task Complexity and Temporal Structure
This paper describes a set of associative learning experiments in which the appropriate response depends on multiple relevant stimuli. We vary both the complexity of the stimulus-response mapping (task) and the temporal structure of the stimuli that are presented. We find that both of these manipulations affect the accuracy with which the task can be learnt, and that task complexity affects the proportion of subjects who correctly provide declarative knowledge of the underlying association. Computational modelling of subjects’ behaviour, based on Dynamic Logistic Regression models, allowed us to probe the strategies that subjects employed during learning. We found that the majority of subjects employed a configural learning strategy during the complex task and a mixed configural/rule-based strategy during the simpler task. Computational modelling also provided an entropybased index of strategy exploration with greater exploration observed during the complex task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1