硅取代掺杂扶手型单壁碳纳米管:密度泛函理论研究

Hong-cun Bai, Honghua Ma, Yuhua Wu, Nini Yuan, Jun Li, Yongqiang Ji
{"title":"硅取代掺杂扶手型单壁碳纳米管:密度泛函理论研究","authors":"Hong-cun Bai, Honghua Ma, Yuhua Wu, Nini Yuan, Jun Li, Yongqiang Ji","doi":"10.1109/3M-NANO.2013.6737422","DOIUrl":null,"url":null,"abstract":"In this paper the nanotubes obtained by silicon atoms substitutionally doping the armchair single-walled carbon nanotubes were investigated by quantum chemistry calculations under the framework of density functional theory. The geometrical structures, relative stabilities and electronic properties of the fifteen Si-doped tubes were studied in details and compared with those of the pristine (5, 5) tubes. It is found that the Si atoms tend to “pop out” from the original positions when the silicon atoms are introduced into the nanotubes. The Si-doped nanotubes exhibit lower thermodynamic stability than those of the undoped tubes from viewpoint of cohesive energy, and this is similar to the case of the silicon doped zigzag nanotubes. The energy levels of the frontier orbitals vary very little when the silicon atom is introduced into the nanotubes. However, most hybrid nanotubes present smaller energy gaps than those of the pristine ones.","PeriodicalId":120368,"journal":{"name":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","volume":"212 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Doping the armchair single-walled carbon nanotubes by silicon substitutions: A density functional theory study\",\"authors\":\"Hong-cun Bai, Honghua Ma, Yuhua Wu, Nini Yuan, Jun Li, Yongqiang Ji\",\"doi\":\"10.1109/3M-NANO.2013.6737422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the nanotubes obtained by silicon atoms substitutionally doping the armchair single-walled carbon nanotubes were investigated by quantum chemistry calculations under the framework of density functional theory. The geometrical structures, relative stabilities and electronic properties of the fifteen Si-doped tubes were studied in details and compared with those of the pristine (5, 5) tubes. It is found that the Si atoms tend to “pop out” from the original positions when the silicon atoms are introduced into the nanotubes. The Si-doped nanotubes exhibit lower thermodynamic stability than those of the undoped tubes from viewpoint of cohesive energy, and this is similar to the case of the silicon doped zigzag nanotubes. The energy levels of the frontier orbitals vary very little when the silicon atom is introduced into the nanotubes. However, most hybrid nanotubes present smaller energy gaps than those of the pristine ones.\",\"PeriodicalId\":120368,\"journal\":{\"name\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"volume\":\"212 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2013.6737422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2013.6737422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文在密度泛函理论的框架下,用量子化学计算方法研究了硅原子取代掺杂扶手型单壁碳纳米管制备的纳米管。详细研究了15个硅掺杂管的几何结构、相对稳定性和电子性能,并与原始(5,5)硅掺杂管进行了比较。当硅原子被引入到纳米管中时,硅原子倾向于从原来的位置“弹出”。从内聚能的角度来看,掺硅纳米管的热力学稳定性低于未掺硅纳米管,这与掺硅之字形纳米管的情况相似。当硅原子被引入纳米管中时,前沿轨道的能级变化很小。然而,大多数混合纳米管呈现出比原始纳米管更小的能隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Doping the armchair single-walled carbon nanotubes by silicon substitutions: A density functional theory study
In this paper the nanotubes obtained by silicon atoms substitutionally doping the armchair single-walled carbon nanotubes were investigated by quantum chemistry calculations under the framework of density functional theory. The geometrical structures, relative stabilities and electronic properties of the fifteen Si-doped tubes were studied in details and compared with those of the pristine (5, 5) tubes. It is found that the Si atoms tend to “pop out” from the original positions when the silicon atoms are introduced into the nanotubes. The Si-doped nanotubes exhibit lower thermodynamic stability than those of the undoped tubes from viewpoint of cohesive energy, and this is similar to the case of the silicon doped zigzag nanotubes. The energy levels of the frontier orbitals vary very little when the silicon atom is introduced into the nanotubes. However, most hybrid nanotubes present smaller energy gaps than those of the pristine ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on composite autofocus algorithm for detection system of pipeline robot Ionic current investigation in silicon nanochannels with molecular dynamics simulations Fabrication of a single CuO nanowire-based gas sensor working at room temperature Improving photoelectric conversion efficiency of DSSC using ZnO/ZnP composite nanorods The design and new controller of a 1-DOF precision positioning platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1