数据流模型中的三角形和四周期计数

A. Mcgregor, Sofya Vorotnikova
{"title":"数据流模型中的三角形和四周期计数","authors":"A. Mcgregor, Sofya Vorotnikova","doi":"10.1145/3375395.3387652","DOIUrl":null,"url":null,"abstract":"The problem of estimating the number of cycles in a graph is one of the most widely studied graph problems in the data stream model. Three relevant variants of the data stream model include: the arbitrary order model in which the stream consists of the edges of the graph in arbitrary order, the random order model in which the edges are randomly permuted, and the adjacency list order model in which all edges incident to the same vertex appear consecutively. In this paper, we focus on the problem of triangle and four-cycle counting in these models. We improve over the state-of-the-art results as follows, where n is the number of vertices, m is the number of edges and T is the number of triangles/four-cycles in the graph (i.e., the quantity being estimated): Random Order Model: We present a single-pass algorithm that (1+ε)-approximates the number of triangles using ~O(ε-2 m/√T) space and prove that this is optimal in the range T ≤ √m. The best previous result, a (3+ε)-approximation using ~O(ε-4.5 m/√T) space, was presented by Cormode and Jowhari~(Theor. Comput. Sci. 2017). Adjacency List Model: We present an algorithm that returns a (1+ε)-approximation of the number of 4-cycles using two passes and ~O(ε-4 m/√T) space. The best previous result, a constant approximation using ~O(m/T3/8) space, was presented by Kallaugher et al. (PODS~2019). We also show that (1+ε)-approximation in a single pass is possible in a) polylog(n) space if T=Ω(n2) and b) ~O(n) space if T=Ω(n). Arbitrary Order Model: We present a three-pass algorithm that (1+ε)-approximates the number of 4-cycles using ~O(ε-2 m/T1/4) space and a one-pass algorithm that uses ~O(ε-2 n) space when T=Ω(n2). The best existing result, a (1+ε)-approximation using ~O(ε-2 m2/T) space, was presented by Bera and Chakrabarti (STACS~2017). We also show a multi-pass lower bound and another algorithm for distinguishing graphs with no four cycles and graphs with many 4-cycles.","PeriodicalId":412441,"journal":{"name":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Triangle and Four Cycle Counting in the Data Stream Model\",\"authors\":\"A. Mcgregor, Sofya Vorotnikova\",\"doi\":\"10.1145/3375395.3387652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of estimating the number of cycles in a graph is one of the most widely studied graph problems in the data stream model. Three relevant variants of the data stream model include: the arbitrary order model in which the stream consists of the edges of the graph in arbitrary order, the random order model in which the edges are randomly permuted, and the adjacency list order model in which all edges incident to the same vertex appear consecutively. In this paper, we focus on the problem of triangle and four-cycle counting in these models. We improve over the state-of-the-art results as follows, where n is the number of vertices, m is the number of edges and T is the number of triangles/four-cycles in the graph (i.e., the quantity being estimated): Random Order Model: We present a single-pass algorithm that (1+ε)-approximates the number of triangles using ~O(ε-2 m/√T) space and prove that this is optimal in the range T ≤ √m. The best previous result, a (3+ε)-approximation using ~O(ε-4.5 m/√T) space, was presented by Cormode and Jowhari~(Theor. Comput. Sci. 2017). Adjacency List Model: We present an algorithm that returns a (1+ε)-approximation of the number of 4-cycles using two passes and ~O(ε-4 m/√T) space. The best previous result, a constant approximation using ~O(m/T3/8) space, was presented by Kallaugher et al. (PODS~2019). We also show that (1+ε)-approximation in a single pass is possible in a) polylog(n) space if T=Ω(n2) and b) ~O(n) space if T=Ω(n). Arbitrary Order Model: We present a three-pass algorithm that (1+ε)-approximates the number of 4-cycles using ~O(ε-2 m/T1/4) space and a one-pass algorithm that uses ~O(ε-2 n) space when T=Ω(n2). The best existing result, a (1+ε)-approximation using ~O(ε-2 m2/T) space, was presented by Bera and Chakrabarti (STACS~2017). We also show a multi-pass lower bound and another algorithm for distinguishing graphs with no four cycles and graphs with many 4-cycles.\",\"PeriodicalId\":412441,\"journal\":{\"name\":\"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375395.3387652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375395.3387652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

图中循环数的估计问题是数据流模型中研究最广泛的图问题之一。数据流模型的三个相关变体包括:任意顺序模型,其中流由任意顺序的图边组成;随机顺序模型,其中边随机排列;邻接表顺序模型,其中所有与同一顶点相关的边连续出现。在本文中,我们重点讨论了这些模型中的三角形和四循环计数问题。我们改进了最先进的结果如下,其中n是顶点的数量,m是边的数量,T是图中三角形的数量/四个循环(即估计的数量):随机顺序模型:我们提出了一个单遍算法(1+ε)-使用~O(ε-2 m/√T)空间近似三角形的数量,并证明这是在T≤√m范围内的最优算法。Cormode和Jowhari在~O(ε-4.5 m/√T)空间上给出了最好的近似结果(3+ε)。第一版。Sci, 2017)。邻接表模型:我们提出了一种算法,该算法使用两次遍历和~O(ε-4 m/√T)空间返回4循环数的(1+ε)-近似值。Kallaugher等人(PODS~2019)提出了最好的先前结果,即使用~O(m/T3/8)空间的常数近似。我们还证明了如果T=Ω(n2),在a) polylog(n)空间中(1+ε)-单次逼近是可能的;如果T=Ω(n),在b) ~O(n)空间中(1+ε)-近似是可能的。任意阶模型:当T=Ω(n2)时,我们提出了一种使用~O(ε-2 m/T1/4)空间的(1+ε)-三遍算法和使用~O(ε-2 n)空间的一遍算法。现有最好的结果是Bera和Chakrabarti (STACS~2017)提出的~O(ε-2 m2/T)空间的(1+ε)近似。我们还给出了一个多遍下界和另一种区分无四环图和多四环图的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Triangle and Four Cycle Counting in the Data Stream Model
The problem of estimating the number of cycles in a graph is one of the most widely studied graph problems in the data stream model. Three relevant variants of the data stream model include: the arbitrary order model in which the stream consists of the edges of the graph in arbitrary order, the random order model in which the edges are randomly permuted, and the adjacency list order model in which all edges incident to the same vertex appear consecutively. In this paper, we focus on the problem of triangle and four-cycle counting in these models. We improve over the state-of-the-art results as follows, where n is the number of vertices, m is the number of edges and T is the number of triangles/four-cycles in the graph (i.e., the quantity being estimated): Random Order Model: We present a single-pass algorithm that (1+ε)-approximates the number of triangles using ~O(ε-2 m/√T) space and prove that this is optimal in the range T ≤ √m. The best previous result, a (3+ε)-approximation using ~O(ε-4.5 m/√T) space, was presented by Cormode and Jowhari~(Theor. Comput. Sci. 2017). Adjacency List Model: We present an algorithm that returns a (1+ε)-approximation of the number of 4-cycles using two passes and ~O(ε-4 m/√T) space. The best previous result, a constant approximation using ~O(m/T3/8) space, was presented by Kallaugher et al. (PODS~2019). We also show that (1+ε)-approximation in a single pass is possible in a) polylog(n) space if T=Ω(n2) and b) ~O(n) space if T=Ω(n). Arbitrary Order Model: We present a three-pass algorithm that (1+ε)-approximates the number of 4-cycles using ~O(ε-2 m/T1/4) space and a one-pass algorithm that uses ~O(ε-2 n) space when T=Ω(n2). The best existing result, a (1+ε)-approximation using ~O(ε-2 m2/T) space, was presented by Bera and Chakrabarti (STACS~2017). We also show a multi-pass lower bound and another algorithm for distinguishing graphs with no four cycles and graphs with many 4-cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Databases for All Efficient Indexes for Diverse Top-k Range Queries Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems Parallel Algorithms for Sparse Matrix Multiplication and Join-Aggregate Queries Deciding Robustness for Lower SQL Isolation Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1