资源受限网络物理系统中基于dnn共存应用的性能权衡

Elijah Spicer, S. Baidya
{"title":"资源受限网络物理系统中基于dnn共存应用的性能权衡","authors":"Elijah Spicer, S. Baidya","doi":"10.1109/SMARTCOMP58114.2023.00053","DOIUrl":null,"url":null,"abstract":"Modern cyber-physical systems use deep-learning based algorithms for many applications for intelligent decision-making. Many of these systems are resource-constrained due to small form factor or finite energy budget. However, these systems often use multiple deep-learning algorithms simultaneously for a given mission or task. Due to the diverse nature of the algorithms and their performance needs, we need to allocate optimal software and hardware resources for their coexistence. To this aim, in this paper, we study and evaluate the performance tradeoff which will enable the users to choose the size and complexity of the deep learning models, the capacity of the device and also the software framework. With real-world experiments with a wide range of hardware and software, we demonstrate and evaluate the performance of the coexisting deep neural networks (DNN) based applications.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Tradeoff in DNN-based Coexisting Applications in Resource-Constrained Cyber-Physical Systems\",\"authors\":\"Elijah Spicer, S. Baidya\",\"doi\":\"10.1109/SMARTCOMP58114.2023.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern cyber-physical systems use deep-learning based algorithms for many applications for intelligent decision-making. Many of these systems are resource-constrained due to small form factor or finite energy budget. However, these systems often use multiple deep-learning algorithms simultaneously for a given mission or task. Due to the diverse nature of the algorithms and their performance needs, we need to allocate optimal software and hardware resources for their coexistence. To this aim, in this paper, we study and evaluate the performance tradeoff which will enable the users to choose the size and complexity of the deep learning models, the capacity of the device and also the software framework. With real-world experiments with a wide range of hardware and software, we demonstrate and evaluate the performance of the coexisting deep neural networks (DNN) based applications.\",\"PeriodicalId\":163556,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP58114.2023.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代网络物理系统在智能决策的许多应用中使用基于深度学习的算法。许多此类系统由于外形尺寸小或能量预算有限而资源受限。然而,这些系统通常同时使用多种深度学习算法来完成给定的任务或任务。由于算法的多样性及其性能需求,我们需要为它们的共存分配最佳的软件和硬件资源。为此,在本文中,我们研究和评估了性能权衡,这将使用户能够选择深度学习模型的大小和复杂性,设备的容量以及软件框架。通过各种硬件和软件的真实世界实验,我们展示并评估了共存的基于深度神经网络(DNN)的应用程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Tradeoff in DNN-based Coexisting Applications in Resource-Constrained Cyber-Physical Systems
Modern cyber-physical systems use deep-learning based algorithms for many applications for intelligent decision-making. Many of these systems are resource-constrained due to small form factor or finite energy budget. However, these systems often use multiple deep-learning algorithms simultaneously for a given mission or task. Due to the diverse nature of the algorithms and their performance needs, we need to allocate optimal software and hardware resources for their coexistence. To this aim, in this paper, we study and evaluate the performance tradeoff which will enable the users to choose the size and complexity of the deep learning models, the capacity of the device and also the software framework. With real-world experiments with a wide range of hardware and software, we demonstrate and evaluate the performance of the coexisting deep neural networks (DNN) based applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching Humanoid Robots to Assist Humans for Collaborative Tasks Keynotes A Novel Context Aware Paths Recommendation Approach for the Cultural Heritage Enhancement Internet of Things in SPA Medicine: A General Framework to Improve User Treatments Nisshash: Design of An IoT-based Smart T-Shirt for Guided Breathing Exercises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1