电动汽车用高功率密度低压DC-DC变换器的设计与优化

Yang Chen, Wenbo Liu, Andrew Yurek, Xiaoping Zhou, Bo Sheng, Yanfei Liu
{"title":"电动汽车用高功率密度低压DC-DC变换器的设计与优化","authors":"Yang Chen, Wenbo Liu, Andrew Yurek, Xiaoping Zhou, Bo Sheng, Yanfei Liu","doi":"10.1109/ECCE44975.2020.9235889","DOIUrl":null,"url":null,"abstract":"This paper presents a high power density LLC converter for Electric Vehicles (EVs) on-board low voltage DC-DC converter. The design specification imposes critical challenges on size and efficiency due to extremely high load current rating and wide input/output voltage range. The proposed design enables high switching frequency by using wide-band-gap (WBG) devices to significantly reduce the size of magnetic components and meet the power density requirement. A two-transformer configuration with series connected primary windings and parallel connected secondary windings is used to reduce the heavy I2R loss on the output side. The structures of parallel resonant inductor and transformers are carefully designed to reduce the fringing loss and AC conduction loss. A single phase 1.3kW LLC prototype with water cooling was built and experiment results verified the design considerations. The prototype achieved 3kW/L of power density and 97% peak efficiency. Full input voltage range from 250V to 430V and output voltage from 9V to 16V operation was verified with 96.5% efficiency achieved at nominal input and full load.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design and Optimization of A High Power Density Low Voltage DC-DC Converter for Electric Vehicles\",\"authors\":\"Yang Chen, Wenbo Liu, Andrew Yurek, Xiaoping Zhou, Bo Sheng, Yanfei Liu\",\"doi\":\"10.1109/ECCE44975.2020.9235889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high power density LLC converter for Electric Vehicles (EVs) on-board low voltage DC-DC converter. The design specification imposes critical challenges on size and efficiency due to extremely high load current rating and wide input/output voltage range. The proposed design enables high switching frequency by using wide-band-gap (WBG) devices to significantly reduce the size of magnetic components and meet the power density requirement. A two-transformer configuration with series connected primary windings and parallel connected secondary windings is used to reduce the heavy I2R loss on the output side. The structures of parallel resonant inductor and transformers are carefully designed to reduce the fringing loss and AC conduction loss. A single phase 1.3kW LLC prototype with water cooling was built and experiment results verified the design considerations. The prototype achieved 3kW/L of power density and 97% peak efficiency. Full input voltage range from 250V to 430V and output voltage from 9V to 16V operation was verified with 96.5% efficiency achieved at nominal input and full load.\",\"PeriodicalId\":433712,\"journal\":{\"name\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"06 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE44975.2020.9235889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9235889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一种用于电动汽车车载低压DC-DC变换器的高功率密度LLC变换器。由于极高的负载额定电流和宽输入/输出电压范围,设计规范对尺寸和效率提出了严峻的挑战。该设计通过使用宽带隙(WBG)器件实现高开关频率,从而显着减小磁性元件的尺寸并满足功率密度要求。采用一次绕组串联和二次绕组并联的双变压器配置,以减少输出侧的严重I2R损耗。通过对并联谐振电感和互感器的结构进行精心设计,降低了边缘损耗和交流导通损耗。搭建了水冷式单相1.3kW LLC样机,实验结果验证了设计思路。原型机实现了3kW/L的功率密度和97%的峰值效率。全输入电压范围为250V ~ 430V,输出电压范围为9V ~ 16V,在标称输入和全负载下,效率达到96.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Optimization of A High Power Density Low Voltage DC-DC Converter for Electric Vehicles
This paper presents a high power density LLC converter for Electric Vehicles (EVs) on-board low voltage DC-DC converter. The design specification imposes critical challenges on size and efficiency due to extremely high load current rating and wide input/output voltage range. The proposed design enables high switching frequency by using wide-band-gap (WBG) devices to significantly reduce the size of magnetic components and meet the power density requirement. A two-transformer configuration with series connected primary windings and parallel connected secondary windings is used to reduce the heavy I2R loss on the output side. The structures of parallel resonant inductor and transformers are carefully designed to reduce the fringing loss and AC conduction loss. A single phase 1.3kW LLC prototype with water cooling was built and experiment results verified the design considerations. The prototype achieved 3kW/L of power density and 97% peak efficiency. Full input voltage range from 250V to 430V and output voltage from 9V to 16V operation was verified with 96.5% efficiency achieved at nominal input and full load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Analysis of a High Saliency Transverse Flux Machine with a Novel Rotor Structure for Traction Applications Design and Evaluation of a Power Hardware-in-the-Loop Machine Emulator Statistics-based Switching Loss Characterization of Power Semiconductor Device Electromagnetic Interference Spectrum Steering Technique using Switching Angles Modulation in GaN DC-DC Converters Winding Embedded Liquid Cooling for High Power Density Slotless Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1