在无处不在的环境中实现攻击行为预测

Theodoros Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades
{"title":"在无处不在的环境中实现攻击行为预测","authors":"Theodoros Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades","doi":"10.1109/PERSER.2005.1506559","DOIUrl":null,"url":null,"abstract":"The pervasive computing paradigm has raised issues such as conceptual semantic descriptions and ambient management of information resources. The probabilistic theory on the other hand provides uncertain knowledge representation schemes that are semantically inefficient. However, security models related to attacks exploits both semantic and probabilistic modeling. Issues such as attack prediction and classification of attacker's intentions are of high importance in IDS environments. In this paper we propose a novel Breadth and Depth Bayesian classifier and an inference probabilistic algorithm. The inference algorithm is applied over well defined conceptual information integrated in a hybrid IDS by means of ontologies.","PeriodicalId":375822,"journal":{"name":"ICPS '05. Proceedings. International Conference on Pervasive Services, 2005.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Enabling attack behavior prediction in ubiquitous environments\",\"authors\":\"Theodoros Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades\",\"doi\":\"10.1109/PERSER.2005.1506559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pervasive computing paradigm has raised issues such as conceptual semantic descriptions and ambient management of information resources. The probabilistic theory on the other hand provides uncertain knowledge representation schemes that are semantically inefficient. However, security models related to attacks exploits both semantic and probabilistic modeling. Issues such as attack prediction and classification of attacker's intentions are of high importance in IDS environments. In this paper we propose a novel Breadth and Depth Bayesian classifier and an inference probabilistic algorithm. The inference algorithm is applied over well defined conceptual information integrated in a hybrid IDS by means of ontologies.\",\"PeriodicalId\":375822,\"journal\":{\"name\":\"ICPS '05. Proceedings. International Conference on Pervasive Services, 2005.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICPS '05. Proceedings. International Conference on Pervasive Services, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERSER.2005.1506559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICPS '05. Proceedings. International Conference on Pervasive Services, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERSER.2005.1506559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

普适计算范式提出了诸如概念语义描述和信息资源的环境管理等问题。另一方面,概率论提供了语义上效率低下的不确定知识表示方案。然而,与攻击相关的安全模型同时利用语义和概率建模。在IDS环境中,攻击预测和攻击者意图分类等问题非常重要。本文提出了一种新的广度和深度贝叶斯分类器和一种推理概率算法。该推理算法应用于通过本体集成在混合入侵检测系统中的定义良好的概念信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling attack behavior prediction in ubiquitous environments
The pervasive computing paradigm has raised issues such as conceptual semantic descriptions and ambient management of information resources. The probabilistic theory on the other hand provides uncertain knowledge representation schemes that are semantically inefficient. However, security models related to attacks exploits both semantic and probabilistic modeling. Issues such as attack prediction and classification of attacker's intentions are of high importance in IDS environments. In this paper we propose a novel Breadth and Depth Bayesian classifier and an inference probabilistic algorithm. The inference algorithm is applied over well defined conceptual information integrated in a hybrid IDS by means of ontologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peer-based automatic configuration of pervasive applications MaTRICS: a management tool for the remote intelligent configuration of (pervasive) systems Exploiting pervasive enterprise chronicles using unstructured information management Trust and authorization in the grid: a recommendation model Reliable file sharing scheme for mobile peer-to-peer users using epidemic selective caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1