Ning Liu, Bo Shen, Kun Mi, Mingdong Sun, Naiyue Chen
{"title":"基于方面的多要素注意和词性情感分析","authors":"Ning Liu, Bo Shen, Kun Mi, Mingdong Sun, Naiyue Chen","doi":"10.1109/Ubi-Media.2019.00016","DOIUrl":null,"url":null,"abstract":"Aspect-based Sentiment analysis (ABSA) is a rapidly growing field of research in natural language processing. ABSA is a fine-grained task of Sentiment analysis. How to capture precise sentiment expressions in a sentence towards the specific aspect remains a challenge. In this paper, we propose a novel neural network, named Multiple-element Attention LSTM (MEA-LSTM) to alleviate the problem of self-attention or binary-element attention used in the ABSA task. These attention mechanisms mentioned above are weak attention, they ignore the information of aspect target or sentence representation. To capture the precise sentiment expressions, we make use of multiple-element attention to assign different importance degrees of different words in a sentence. To store these informative aspect-dependent representations, extra representation memory is designed. Part of speech (POS) is an important feature in identifying the sentiment expressions in the ABSA task. We combine POS with the LSTM in the proposed MEA-LSTM. Experimental results show that our proposed model acquires state-of-the-art accuracy at both restaurant and laptop datasets. Besides, a rule of thumb about choosing the number of hops is given on both datasets.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect-Based Sentiment Analysis with the Multiple-Element Attention and Part of Speech\",\"authors\":\"Ning Liu, Bo Shen, Kun Mi, Mingdong Sun, Naiyue Chen\",\"doi\":\"10.1109/Ubi-Media.2019.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect-based Sentiment analysis (ABSA) is a rapidly growing field of research in natural language processing. ABSA is a fine-grained task of Sentiment analysis. How to capture precise sentiment expressions in a sentence towards the specific aspect remains a challenge. In this paper, we propose a novel neural network, named Multiple-element Attention LSTM (MEA-LSTM) to alleviate the problem of self-attention or binary-element attention used in the ABSA task. These attention mechanisms mentioned above are weak attention, they ignore the information of aspect target or sentence representation. To capture the precise sentiment expressions, we make use of multiple-element attention to assign different importance degrees of different words in a sentence. To store these informative aspect-dependent representations, extra representation memory is designed. Part of speech (POS) is an important feature in identifying the sentiment expressions in the ABSA task. We combine POS with the LSTM in the proposed MEA-LSTM. Experimental results show that our proposed model acquires state-of-the-art accuracy at both restaurant and laptop datasets. Besides, a rule of thumb about choosing the number of hops is given on both datasets.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aspect-Based Sentiment Analysis with the Multiple-Element Attention and Part of Speech
Aspect-based Sentiment analysis (ABSA) is a rapidly growing field of research in natural language processing. ABSA is a fine-grained task of Sentiment analysis. How to capture precise sentiment expressions in a sentence towards the specific aspect remains a challenge. In this paper, we propose a novel neural network, named Multiple-element Attention LSTM (MEA-LSTM) to alleviate the problem of self-attention or binary-element attention used in the ABSA task. These attention mechanisms mentioned above are weak attention, they ignore the information of aspect target or sentence representation. To capture the precise sentiment expressions, we make use of multiple-element attention to assign different importance degrees of different words in a sentence. To store these informative aspect-dependent representations, extra representation memory is designed. Part of speech (POS) is an important feature in identifying the sentiment expressions in the ABSA task. We combine POS with the LSTM in the proposed MEA-LSTM. Experimental results show that our proposed model acquires state-of-the-art accuracy at both restaurant and laptop datasets. Besides, a rule of thumb about choosing the number of hops is given on both datasets.