Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, M. Kandemir
{"title":"半人马:一种可靠、低损耗、高密度3D NAND存储的新架构","authors":"Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, M. Kandemir","doi":"10.1145/3393691.3394177","DOIUrl":null,"url":null,"abstract":"Due to the high density storage demand coming from applications from different domains, 3D NAND flash is becoming a promising candidate to replace 2D NAND flash as the dominant non-volatile memory. However, denser 3D NAND presents various performance and reliability issues, which can be addressed by the 3D NAND specific full-sequence program (FSP) operation. The FSP programs multiple pages simultaneously to mitigate the performance degradation caused by the long latency 3D NAND baseline program operations. However, the FSP-enabled 3D NAND-based SSDs introduce lifetime degradation due to the larger write granularities accessed by the FSP. To address the lifetime issue, in this paper, we propose and experimentally evaluate Centaur, a heterogeneous 2D/3D NAND heterogeneous SSD, as a solution. Centaur has three main components: a lifetime-aware inter-NAND request dispatcher, a lifetime-aware inter-NAND work stealer, and a data migration strategy from 2D NAND to 3D NAND. We used twelve SSD workloads to compare Centaur against a state-of-the-art 3D NAND-based SSD with the same capacity. Our experimental results indicate that the SSD lifetime and performance are improved by 3.7x and 1.11x, respectively, when using our 2D/3D heterogeneous SSD.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centaur: A Novel Architecture for Reliable, Low-Wear, High-Density 3D NAND Storage\",\"authors\":\"Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, M. Kandemir\",\"doi\":\"10.1145/3393691.3394177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high density storage demand coming from applications from different domains, 3D NAND flash is becoming a promising candidate to replace 2D NAND flash as the dominant non-volatile memory. However, denser 3D NAND presents various performance and reliability issues, which can be addressed by the 3D NAND specific full-sequence program (FSP) operation. The FSP programs multiple pages simultaneously to mitigate the performance degradation caused by the long latency 3D NAND baseline program operations. However, the FSP-enabled 3D NAND-based SSDs introduce lifetime degradation due to the larger write granularities accessed by the FSP. To address the lifetime issue, in this paper, we propose and experimentally evaluate Centaur, a heterogeneous 2D/3D NAND heterogeneous SSD, as a solution. Centaur has three main components: a lifetime-aware inter-NAND request dispatcher, a lifetime-aware inter-NAND work stealer, and a data migration strategy from 2D NAND to 3D NAND. We used twelve SSD workloads to compare Centaur against a state-of-the-art 3D NAND-based SSD with the same capacity. Our experimental results indicate that the SSD lifetime and performance are improved by 3.7x and 1.11x, respectively, when using our 2D/3D heterogeneous SSD.\",\"PeriodicalId\":188517,\"journal\":{\"name\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3393691.3394177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Centaur: A Novel Architecture for Reliable, Low-Wear, High-Density 3D NAND Storage
Due to the high density storage demand coming from applications from different domains, 3D NAND flash is becoming a promising candidate to replace 2D NAND flash as the dominant non-volatile memory. However, denser 3D NAND presents various performance and reliability issues, which can be addressed by the 3D NAND specific full-sequence program (FSP) operation. The FSP programs multiple pages simultaneously to mitigate the performance degradation caused by the long latency 3D NAND baseline program operations. However, the FSP-enabled 3D NAND-based SSDs introduce lifetime degradation due to the larger write granularities accessed by the FSP. To address the lifetime issue, in this paper, we propose and experimentally evaluate Centaur, a heterogeneous 2D/3D NAND heterogeneous SSD, as a solution. Centaur has three main components: a lifetime-aware inter-NAND request dispatcher, a lifetime-aware inter-NAND work stealer, and a data migration strategy from 2D NAND to 3D NAND. We used twelve SSD workloads to compare Centaur against a state-of-the-art 3D NAND-based SSD with the same capacity. Our experimental results indicate that the SSD lifetime and performance are improved by 3.7x and 1.11x, respectively, when using our 2D/3D heterogeneous SSD.