利用AERMOD分散模型模拟广宁省金法市火电厂源对环境空气浓度的贡献

Quan Anh Tran, Ngoc Hong Thi Nguyen, Phi Quoc Nguyen, Anh Mai Nguyen
{"title":"利用AERMOD分散模型模拟广宁省金法市火电厂源对环境空气浓度的贡献","authors":"Quan Anh Tran, Ngoc Hong Thi Nguyen, Phi Quoc Nguyen, Anh Mai Nguyen","doi":"10.46326/jmes.2022.63(3).05","DOIUrl":null,"url":null,"abstract":"Cam Pha, the home of three major thermal power plants including Cam Pha, Mong Duong I and Mong Duong II, is one of the most important industrial cities in the North of Vietnam. Air pollution due to stacks emission is the biggest problem threatening Cam Pha City's sustainable development. In this study, the AERMOD modeling system was used to evaluate the impact of the stack emission by the thermal power plants on the ambient atmospheric environment. The maximum 1-HR, 24-HR, 99th percentile and annual average concentrations of TSP, SO2 and NO2 were simulated within the 40x40 km domain of 100x100 m grid spacing with the hourly meteorological data taken from 2018 to 2020. Air dispersion simulation is performed on the observed background gas concentration of the everyday environment. Hourly emission data of 10 primary stack sources of 3 factory groups were used as input data. The simulated spatial distribution of gases indicates the strong fluence of the mountainous topography on the dispersion of stack emission. Results also revealed that the maximum short-term stack emission at ground-level concentrations of SO2 and NO2 are much higher than the national standard, thus raising the risk of severe pollution. TSP pollution is less severe than SO2 and NO2 but still at a dangerous level. Since Cam Pha locates by the East Sea with the prevailing wind is heading northeast and east directions. The annual average concentrations of these pollutants indicate that the high terrain areas at the south and northwest of Cam Pha City, which block the flow of the stack emission, are the most affected regions by exhausted gases from industrial stacks.","PeriodicalId":170167,"journal":{"name":"Journal of Mining and Earth Sciences","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of thermal power plant source contribution to ambient air concentration in Cam Pha City, Quang Ninh province using AERMOD dispersion model\",\"authors\":\"Quan Anh Tran, Ngoc Hong Thi Nguyen, Phi Quoc Nguyen, Anh Mai Nguyen\",\"doi\":\"10.46326/jmes.2022.63(3).05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cam Pha, the home of three major thermal power plants including Cam Pha, Mong Duong I and Mong Duong II, is one of the most important industrial cities in the North of Vietnam. Air pollution due to stacks emission is the biggest problem threatening Cam Pha City's sustainable development. In this study, the AERMOD modeling system was used to evaluate the impact of the stack emission by the thermal power plants on the ambient atmospheric environment. The maximum 1-HR, 24-HR, 99th percentile and annual average concentrations of TSP, SO2 and NO2 were simulated within the 40x40 km domain of 100x100 m grid spacing with the hourly meteorological data taken from 2018 to 2020. Air dispersion simulation is performed on the observed background gas concentration of the everyday environment. Hourly emission data of 10 primary stack sources of 3 factory groups were used as input data. The simulated spatial distribution of gases indicates the strong fluence of the mountainous topography on the dispersion of stack emission. Results also revealed that the maximum short-term stack emission at ground-level concentrations of SO2 and NO2 are much higher than the national standard, thus raising the risk of severe pollution. TSP pollution is less severe than SO2 and NO2 but still at a dangerous level. Since Cam Pha locates by the East Sea with the prevailing wind is heading northeast and east directions. The annual average concentrations of these pollutants indicate that the high terrain areas at the south and northwest of Cam Pha City, which block the flow of the stack emission, are the most affected regions by exhausted gases from industrial stacks.\",\"PeriodicalId\":170167,\"journal\":{\"name\":\"Journal of Mining and Earth Sciences\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46326/jmes.2022.63(3).05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46326/jmes.2022.63(3).05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金法是越南北部最重要的工业城市之一,拥有金法、旺阳1号和旺阳2号三大火力发电厂。烟囱排放造成的大气污染是威胁金法市可持续发展的最大问题。本研究采用AERMOD建模系统对火电厂烟囱排放对周围大气环境的影响进行了评估。利用2018 - 2020年逐时气象资料,模拟了100x100 m栅格间距40x40 km区域内TSP、SO2和NO2的最大1-HR、24-HR、99百分位和年平均浓度。对观测到的日常环境背景气体浓度进行了空气扩散模拟。采用3个工厂集团10个主要烟囱源的小时排放数据作为输入数据。模拟的气体空间分布表明,山地地形对烟囱发射弥散有很强的影响。SO2和NO2地面浓度的最大短期烟囱排放远高于国家标准,增加了严重污染的风险。TSP污染程度虽低于SO2和NO2,但仍处于危险水平。由于金佛岛位于东海之滨,盛行风为东北偏东。这些污染物的年平均浓度表明,卡姆法市南部和西北部的高地地区是工业烟囱排放废气影响最大的地区,这些地区阻碍了烟囱排放的流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of thermal power plant source contribution to ambient air concentration in Cam Pha City, Quang Ninh province using AERMOD dispersion model
Cam Pha, the home of three major thermal power plants including Cam Pha, Mong Duong I and Mong Duong II, is one of the most important industrial cities in the North of Vietnam. Air pollution due to stacks emission is the biggest problem threatening Cam Pha City's sustainable development. In this study, the AERMOD modeling system was used to evaluate the impact of the stack emission by the thermal power plants on the ambient atmospheric environment. The maximum 1-HR, 24-HR, 99th percentile and annual average concentrations of TSP, SO2 and NO2 were simulated within the 40x40 km domain of 100x100 m grid spacing with the hourly meteorological data taken from 2018 to 2020. Air dispersion simulation is performed on the observed background gas concentration of the everyday environment. Hourly emission data of 10 primary stack sources of 3 factory groups were used as input data. The simulated spatial distribution of gases indicates the strong fluence of the mountainous topography on the dispersion of stack emission. Results also revealed that the maximum short-term stack emission at ground-level concentrations of SO2 and NO2 are much higher than the national standard, thus raising the risk of severe pollution. TSP pollution is less severe than SO2 and NO2 but still at a dangerous level. Since Cam Pha locates by the East Sea with the prevailing wind is heading northeast and east directions. The annual average concentrations of these pollutants indicate that the high terrain areas at the south and northwest of Cam Pha City, which block the flow of the stack emission, are the most affected regions by exhausted gases from industrial stacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ESP Application for Oil Production in Naturally Fractured Granitic Basement Reservoir Comparison analytical hierarchy process (AHP) and frequency ratio (FR) method in assessment of landslide susceptibility. A case study in Van Yen district, Yen Bai province Deep geological structure of An Chau trough base on new study data Assessment of liquefaction potential of sand distributed in the 1 District, Ho Chi Minh city Geotechnical zoning in Hai Duong province for construction planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1